Skip to main content
Log in

Magnetoelectric Composites yNi1−xCdxFe2O4 + (1 − y)Ba0.8Sr0.2TiO3 (x = 0.2, 0.4, 0.6; y = 0.15, 0.30, 0.45): Solution-Combustion Synthesis and Microwave Properties

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Magnetoelectric composites yNi1−xCdxFe2O4 + (1 − y)Ba0.8Sr0.2TiO3 (x = 0.2, 0.4, 0.6; y = 0.15, 0.30, 0.45) were prepared by solution-combustion synthesis and characterized by XRD, SEM, and MW measurements. Low MW transmittance (about 0.15) was obtained at f = 8.5 GHz for composites with x = 0.6, y = 0.45. The MW reflectance did not show any dependence on Cd content x. The MW absorptivity levels-off at higher f. A maximum value of dielectric constant (about 42.6) is observed at f = 8.5 GHz for composites with x = 0.6, y = 0.45. Our composites seem promising for use in tunable microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chamaani, S., Mirtaheri, S.A., Teshnehlab, M., Shoorehdeli, M.A., and Seydi, V., Modified multi-objective particle swarm optimization of electromagnetic absorber design, Prog. Electromagn. Res., 2008, vol. 79, pp. 353–366.

    Article  Google Scholar 

  2. Oates, D.E. and Dionne, G.F., Tunable YBCO resonators on YIG substrates, IEEE Trans. Appl. Supercond., 1997, vol. 7, no. 2, pp. 2338–2342. doi 10.1109/77.621708

    Article  Google Scholar 

  3. Young, A.J., Tae, S.S., and Soon, G.Y., Effect of Ni doping on improvement of the tunability and dielectric loss of Ba0.5Sr0.5TiO3 thin films for microwave tunable devices, Jpn. J. Appl. Phys., 2001, vol. 40, no. 1, 6496. doi 10.1143/JJAP.40.6496

    Google Scholar 

  4. Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Yu.I., and Laletin, V.M., Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Phys. Rev. B, 2001, vol. 64, no. 21, 214408. doi 10.1103/Phys-RevB.64.214408

    Article  Google Scholar 

  5. Zhai, J.J., Li, D., Viehland, A., and Bichurin, M.I., Large magnetoelectric susceptibility: The fundamental property of piezoelectric and magnetostrictive laminated composites, Jpn. J. Appl. Phys., 2007, vol. 101, no. 1, 014102. doi 10.1063/1.2405015

    Article  Google Scholar 

  6. Shi, Z., Lin, Y., and Nan, C.W., Magnetoelectric resonance behavior of simple bilayered Pb(Zr, Ti)O3-(Tb, Dy)Fe2/epoxy composites, J. Appl. Phys., 2007, vol. 101, no. 4, 043902. doi 10.1063/1.2653524

    Article  Google Scholar 

  7. Tadjarodi, A., Rahimi, R., Imani, M., Kerdari, H., and Rabbani, M., Synthesis, characterization, and microwave absorbing properties of the novel ferrite nanocomposites, J. Alloys Compd., 2012, vol. 542, no. 1, pp. 43–50. doi 10.1016/j.jallcom.2012.07.049

    Article  Google Scholar 

  8. Hajalilou, A., Mazlan, S.A., and Shameli, K., A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave absorbing properties in mechanically alloyed Ni–Zn ferrite, J. Phys. Chem. Solids, 2016, vols. 96–97, no. 1, pp. 49–59. doi 10.1016/j.jpcs.2016.05.001

    Article  Google Scholar 

  9. Chen, B., Chen, D., Kang, Z., and Zhang, Y., Preparation and microwave properties of Ni–Co nanoferrites, J. Alloys Compd., 2015, vol. 618, no. 2, pp. 222–226. doi 10.1016/j.jallcom.2014.08.195

    Article  Google Scholar 

  10. Chen, D., Zhang, Y., and Tu, C., Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave assisted ball milling, Mater. Lett., 2012, vol. 82, no. 1, pp. 10–12. doi 10.1016/j.matlet.2012.05.034

    Article  Google Scholar 

  11. Hong, J.-S. and Chun, Y.-H., On the development of tunable microwave devices for frequency agile applications, PIERS Online, 2008, vol. 4, pp. 726–730. doi 10.1016/j.jallcom.2014.08.195

    Article  Google Scholar 

  12. Chun, Y.H., Hong, J.-S., Bao, P., Jackson, T.J., and Lancaster, M.J., BST-varactor tunable dual-mode filter using variable ZC transmission line, IEEE Microwave Wireless Compon. Lett., 2008, vol. 18, no. 3, pp. 167–169. doi 10.1109/LMWC.2008.916778

    Article  Google Scholar 

  13. Tatarenko, A.S., Bichurin, M.I., and Srinivasan, G., Electrically tunable microwave filters based on ferromagnetic resonance in single crystal ferrite–ferroelectric bilayers, Electron. Lett., 2005, vol. 41, no. 10, pp. 596–597. doi 10.1049/el:20050925

    Article  Google Scholar 

  14. Chou, Y.-H., Jeng, M.-J., Lee, Y.-H., and Jan, Y.-G., Measurement of RF PCB dielectric properties and losses, Prog. Electr. Reson. Lett., 2008, vol. 4, no. 2, pp. 139–148. doi 10.2528/PIERL08072403

    Article  Google Scholar 

  15. He, X., Tang, Z.-X., Zhang, B., and Wu, Y., A new deembedding method in permittivity measurement of ferroelectric thin film material, Prog. Electr. Reson. Lett., 2008, vol. 3, no. 1, pp. 1–8.

    Google Scholar 

  16. Jadhav, R.N. and Puri, V., Microwave absorption, conductivity and complex permittivity of frittless Ni1-xCuxMnO4 (0 = x = 1) ceramic thick film: Effect of copper, Prog. Electr. Res. C, 2009, vol. 8, pp. 149–160.

    Article  Google Scholar 

  17. Kim, S.S., Jo, S.B., Guen, K.I., Choi, K.K., Kim, J.M., and Churn, K.S., Complex permeability and permittivity and microwave absorption of ferrite rubber composites, IEEE Trans. Magn., 1991, vol. 27, no. 6, pp. 5462–5464, doi doi 10.1109/20.278872

    Article  Google Scholar 

  18. Vhankhande, B.B., Jadhav, S.V., Kulkarni, D.C., and Puri, V., Investigations on the microwave properties of electropolymerized polyaniline thin film, Microwave Opt. Technol. Lett., 2008, vol. 50, pp. 761–766. doi 10.1002/mop.23196

    Article  Google Scholar 

  19. Adam, S.F., Microwave Theory and Applications, Englewood Cliffs, NJ: Prentice Hall, 1969.

    Google Scholar 

  20. Shelar, M.B., Chougule, S.S., Mallapur, M.M., Chougule, B.K., and Puri, V., Structural and electrical properties of nickel cadmium ferrites prepared through selfpropagating auto combustion method, J. Alloys Compd., 2009, vol. 476, nos. 1–2, pp. 760–764. doi 10.1016/j.jallcom.2008.09.107

    Article  Google Scholar 

  21. Patankar, K.K., Mathe, V.L., Patil, R.N., and Chougule, B.K., Structural analysis, magnetic properties, and magnetoelectric effect in piezomagnetic–piezoelectric composites, Mater. Chem. Phys., 2006, vol. 96, nos. 2–3, pp. 197–200. doi 10.1016/j.matchemphys.2005.07.009

    Article  Google Scholar 

  22. Jaffe, B. and Cook, W.R., Piezoelectric Ceramics, London: Academic, 1971.

    Google Scholar 

  23. Patankar, K.K., Nipanikar, R.R., Mathe, V.L., Mahajan, R.P., and Patil, S.A., Role of sintering on magnetoelectric effect in CuFe1.8Cr0.2O4–Ba0.8Pb0.2Ti0.8Zr0.2O3 composite ceramics, Ceram. Int., 2001, vol. 27, no. 8, pp. 853–858. doi 10.1016/S0272-8842(01)00040-2

    Article  Google Scholar 

  24. Gul, I.H., Electrial and magnetic characterization of nanocrystalline Ni–Zn ferrites synthesized by co-precipitation route, J. Magn. Magn. Mater., 2008, vol. 320, nos. 3–4, pp. 270–275. doi 10.1016/j.jmmm. 2007.05.032

    Article  Google Scholar 

  25. Chun, Y.H., Hong, J.-S., Bao, P., Jackson, T.J., and Lancaster, M.J., BST varactor tuned band stop filter with slotted structure, IEEE MTT-S Int. Microwave. Symp. Dig., 2008, pp. 1115–1118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shelar.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelar, M.B., Puri, V.R., Yadav, S.N. et al. Magnetoelectric Composites yNi1−xCdxFe2O4 + (1 − y)Ba0.8Sr0.2TiO3 (x = 0.2, 0.4, 0.6; y = 0.15, 0.30, 0.45): Solution-Combustion Synthesis and Microwave Properties. Int. J Self-Propag. High-Temp. Synth. 27, 167–173 (2018). https://doi.org/10.3103/S106138621803010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138621803010X

Keywords

Navigation