Skip to main content
Log in

Co-culturing of Novel Bacillus Species Isolated from Municipal Sludge and Gut of Red Wiggler Worm for Improving CMCase Activity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The novel bacterial strains EF2 and OW1-1 were isolated from intestine of Eisenia fetida and municipal organic waste respectively. The qualitative screening of strains in carboxymethyl cellulose (CMC) agar plate showed a larger zone of clearance with Gram’s iodine staining. The 16S rRNA gene sequences of the strains EF2 and OW1-1 were identified as a gram-positive Bacillus sp. The strains exhibited significantly high CMCase activities of 35.307 ± 0.08 IU/ml and 29.92 ± 0.01 IU/ml, respectively, in EF2 and OW1-1 when 2.5% (w/v) of lactose was used as a carbon source at their optimal pH and temperature. The SDS-PAGE and zymogram analysis of crude enzyme revealed that the molecular weight of CMCase was 60 kDa in both strains. In comparing to monoculture of EF2 and OW1-1, the co-culture increased their activity by 15% and 35.71% respectively. The higher CMCase activity of strains in a wider range of temperatures and pH fluctuation could be a good choice for biofuel industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Medipally, S.R., Yusoff, F.M., Banerjee, S., Shariff, M.: Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res. Int. 2015, 1–13 (2015). https://doi.org/10.1155/2015/519513

    Article  Google Scholar 

  2. Singh Nigam, P., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011). https://doi.org/10.1016/j.pecs.2010.01.003

    Article  Google Scholar 

  3. Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15, 1513–1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  4. Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-0059-y

    Article  Google Scholar 

  5. Horn, S., Vaaje-Kolstad, G., Westereng, B., Eijsink, V.G.: Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5, 45 (2012). https://doi.org/10.1186/1754-6834-5-45

    Article  Google Scholar 

  6. Zhang, Y.-H.P., Ding, S.-Y., Mielenz, J.R., Cui, J.-B., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R.: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97, 214–223 (2007). https://doi.org/10.1002/bit.21386

    Article  Google Scholar 

  7. Harvey, M., Pilgrim, S.: The new competition for land: food, energy, and climate change. Food Policy 36, S40–S51 (2011). https://doi.org/10.1016/j.foodpol.2010.11.009

    Article  Google Scholar 

  8. FitzPatrick, M., Champagne, P., Cunningham, M.F., Whitney, R.A.: A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 101, 8915–8922 (2010). https://doi.org/10.1016/j.biortech.2010.06.125

    Article  Google Scholar 

  9. Zhu, L.: Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew. Sustain. Energy Rev. 41, 1376–1384 (2015). https://doi.org/10.1016/j.rser.2014.09.040

    Article  Google Scholar 

  10. Maki, M., Leung, K.T., Qin, W.: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5, 500–516 (2009). https://doi.org/10.7150/ijbs.5.500

    Article  Google Scholar 

  11. Dashtban, M., Maki, M., Leung, K.T., Mao, C., Qin, W.: Cellulase activities in biomass conversion: measurement methods and comparison. Crit. Rev. Biotechnol. 30, 302–309 (2010). https://doi.org/10.3109/07388551.2010.490938

    Article  Google Scholar 

  12. Hatakka, A., Hammel, K.E.: Fungal biodegradation of lignocelluloses. In: Hofrichter, M. (ed.) Industrial Applications, pp. 319–340. Springer, Berlin (2011)

    Chapter  Google Scholar 

  13. Lindahl, B.O., Taylor, A.F.S., Finlay, R.D.: Defining nutritional constraints on carbon cycling in boreal forests – towards a less `phytocentric’ perspective. Plant Soil 242, 123–135 (2002). https://doi.org/10.1023/A:1019650226585

    Article  Google Scholar 

  14. Brenner, K., You, L., Arnold, F.H.: Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008). https://doi.org/10.1016/j.tibtech.2008.05.004

    Article  Google Scholar 

  15. Druzhinina, I.S., Kubicek, C.P.: Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 10, 1485–1499 (2017). https://doi.org/10.1111/1751-7915.12726

    Article  Google Scholar 

  16. Chambergo, F.S., Bonaccorsi, E.D., Ferreira, A.J.S., Ramos, A.S.P., Ferreira Júnior, J.R., Abrahão-Neto, J., Farah, J.P.S., El-Dorry, H.: Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J. Biol. Chem. 277, 13983–13988 (2002). https://doi.org/10.1074/jbc.M107651200

    Article  Google Scholar 

  17. Chen, J., Zhang, W., Tan, L., Wang, Y., He, G.: Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering. Biotechnol. Adv. 27, 593–598 (2009). https://doi.org/10.1016/j.biotechadv.2009.04.021

    Article  Google Scholar 

  18. Ellilä, S., Fonseca, L., Uchima, C., Cota, J., Goldman, G.H., Saloheimo, M., Sacon, V., Siika-aho, M.: Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 10, 30 (2017). https://doi.org/10.1186/s13068-017-0717-0

    Article  Google Scholar 

  19. Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., Bischofs, I.B., Kost, C.: Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 6, 6238 (2015). https://doi.org/10.1038/ncomms7238

    Article  Google Scholar 

  20. Jia, X., Liu, C., Song, H., Ding, M., Du, J., Ma, Q., Yuan, Y.: Design, analysis and application of synthetic microbial consortia. Synth. Syst. Biotechnol. 1, 109–117 (2016). https://doi.org/10.1016/j.synbio.2016.02.001

    Article  Google Scholar 

  21. Zhou, S., Ingram, L.O.: Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J. Bacteriol. 182, 5676–5682 (2000). https://doi.org/10.1128/JB.182.20.5676-5682.2000

    Article  Google Scholar 

  22. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M., Gascuel, O.: Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008). https://doi.org/10.1093/nar/gkn180

    Article  Google Scholar 

  23. Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57, 503–507 (2008). https://doi.org/10.1007/s00284-008-9276-8

    Article  Google Scholar 

  24. Gohel, H.R., Contractor, C.N., Ghosh, S.K., Braganza, V.J.: A comparative study of various staining techniques for determination of extra cellular cellulase activity on carboxy methyl cellulose (CMC) agar plates. Int. J. Curr. Microbiol. Appl. Sci. 3, 261–266 (2014)

    Google Scholar 

  25. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  26. Seo, J.K., Park, T.S., Kwon, I.H., Piao, M.Y., Lee, C.H., Ha, J.K.: Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australas. J. Anim. Sci. 26, 50–58 (2013). https://doi.org/10.5713/ajas.2012.12506

    Article  Google Scholar 

  27. Ray, A.K., Bairagi, A., Sarkar Ghosh, K., Sen, S.K.: Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol. Piscat. 37, 47–53 (2007)

    Article  Google Scholar 

  28. Immanuel, G., Dhanusha, R., Prema, P., Palavesam, A.: Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Environ. Sci. Technol. 3, 25–34 (2006). https://doi.org/10.1007/BF03325904

    Article  Google Scholar 

  29. Johnson, E.A., Sakajoh, M., Halliwell, G.: Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43, 1125–1132 (1982)

    Article  Google Scholar 

  30. Mmango-Kaseke, Z., Okaiyeto, K., Nwodo, U., Mabinya, L., Okoh, A.: Optimization of cellulase and xylanase production by Micrococcus species under submerged fermentation. Sustainability 8, 1168 (2016). https://doi.org/10.3390/su8111168

    Article  Google Scholar 

  31. Jungang, W., Binbin, H., Xiaofen, W., Zongjun, C.: Characteristics of cellulase in cellulose-degrading bacterium strain Clostridium straminisolvens (CSK1). Afr. J. Microbiol. Res. 11, 414–421 (2017). https://doi.org/10.5897/AJMR2016.8357

    Article  Google Scholar 

  32. Kim, J.-Y., Hur, S.-H., Hong, J.-H.: Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27, 313–316 (2005). https://doi.org/10.1007/s10529-005-0685-5

    Article  Google Scholar 

  33. Samiullah, T.R., Bakhsh, A., Rao, A.Q., Naz, M., Saleem, M.: Isolation, purification and characterization of extracellular β-glucosidase from Bacillus sp. Adv. Environ. Biol. 3, 269–277 (2009)

    Google Scholar 

  34. Gaur, R., Tiwari, S.: Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15, 19 (2015). https://doi.org/10.1186/s12896-015-0129-9

    Article  Google Scholar 

  35. Enari, T., Markkanen, P.: Production of cellulolytic enzymes by fungi. Adv. Biochem. Eng. 5, 1–24 (1977)

    Article  Google Scholar 

  36. Yang, W., Meng, F., Peng, J., Han, P., Fang, F., Ma, L., Cao, B.: Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electron. J. Biotechnol. 17, 262–267 (2014). https://doi.org/10.1016/j.ejbt.2014.08.002

    Article  Google Scholar 

  37. Dias, P.V.S., Ramos, K.O., Padilha, I.Q.M., Araújo, D.A.M., Santos, S.F.M., Silva, F.L.H.: Optimization of cellulase production by Bacillus sp. isolated from sugarcane cultivated soil. Ital. Assoc. Chem. Eng. 38, 277–282 (2014). https://doi.org/10.3303/CET1438047

    Article  Google Scholar 

  38. Grant, C.L., Pramer, D.: Minor element composition of yeast extract. J. Bacteriol. 84, 869–870 (1962)

    Article  Google Scholar 

  39. Sadhu, S., Saha, P., Mayilraj, S., Maiti, T.K.: Lactose-enhanced cellulase production by Microbacterium sp. isolated from fecal matter of zebra (Equus zebra). Curr. Microbiol. 62, 1050–1055 (2011). https://doi.org/10.1007/s00284-010-9816-x

    Article  Google Scholar 

  40. Paudel, Y.P., Qin, W.: Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Appl. Biochem. Biotechnol. 177, 1186–1198 (2015). https://doi.org/10.1007/s12010-015-1806-9

    Article  Google Scholar 

  41. El-Hadi, A.A., El-Nour, S.A., Hammad, A., Kamel, Z., Anwar, M.: Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J. Radiat. Res. Appl. Sci. 7, 23–28 (2014). https://doi.org/10.1016/j.jrras.2013.11.003

    Article  Google Scholar 

  42. Karaffa, L., Fekete, E., Gamauf, C., Szentirmai, A., Kubicek, C.P., Seiboth, B.: D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 152, 1507–1514 (2006). https://doi.org/10.1099/mic.0.28719-0

    Article  Google Scholar 

  43. Poszytek, K., Ciezkowska, M., Sklodowska, A., Drewniak, L.: Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front. Microbiol. 7, 324 (2016). https://doi.org/10.3389/fmicb.2016.00324

    Article  Google Scholar 

  44. Guo, P., Zhu, W., Wang, H., Lü, Y., Wang, X., Zheng, D., Cui, Z.: Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20, 254–264 (2010)

    Article  Google Scholar 

  45. Coral, G., Arikan, B., Ünaldi, M., Guvenmez, H.: Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk. J. Biol. 26, 209–213 (2002)

    Google Scholar 

  46. Padilha, I.Q.M., Carvalho, L.C.T., Dias, P.V.S., Grisi, T.C.S.L., Honorato Da Silva, F.L., Santos, S.F.M., Araújo, D.A.M.: Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz. J. Chem. Eng. 32, 35–42 (2015). https://doi.org/10.1590/0104-6632.20150321s00003298

    Article  Google Scholar 

  47. Ariffin, H., Abdullah, N., Umi Kalsom, M.S., Shirai, Y., Hassan, M.: Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 3, 47–53 (2006)

    Google Scholar 

  48. Baraldo Junior, A., Borges, D.G., Tardioli, P.W., Farinas, C.S.: Characterization of β-glucosidase produced by Aspergillus niger under solid-state fermentation and partially purified using MANAE-agarose. Biotechnol. Res. Int. 2014, 1–8 (2014). https://doi.org/10.1155/2014/317092

    Article  Google Scholar 

Download references

Funding

Funding was provided by BioFuelNet Canada (Project No. 67) and NSERC-RDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.K., Xu, C.C. & Qin, W. Co-culturing of Novel Bacillus Species Isolated from Municipal Sludge and Gut of Red Wiggler Worm for Improving CMCase Activity. Waste Biomass Valor 11, 2047–2058 (2020). https://doi.org/10.1007/s12649-018-0448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0448-x

Keywords

Navigation