Skip to main content
Log in

Capital asset market equilibrium with liquidity risk, portfolio constraints, and asset price bubbles

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

This paper derives an equilibrium asset pricing model with endogenous liquidity risk, portfolio constraints, and asset price bubbles. Liquidity risk is modeled as a stochastic quantity impact on the price from trading, where the size of the impact depends on trade size. Asset price bubbles are generated by the existence of portfolio constraints, e.g. short sale prohibitions and margin requirements. Under a restrictive set of assumptions, we prove a unique equilibrium price process exists for our economy. We characterize the market’s state price density, which enables the derivation of the risk-return relation for the stock’s expected return including both liquidity risk and asset price bubbles. This yields a generalized intertemporal and consumption CAPM for our economy. In contrast to the traditional models without liquidity risk or asset price bubbles, there are additional systematic liquidity risk and asset price bubble factors which are related to the stock return’s covariation with liquidity risk and asset price bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For simplicity of notation, we will often drop the dependence of \(\varphi _{t}\) on \(\omega \).

  2. This implies that \({\tilde{s}}_{t}(x,\omega )=xs_{t}(x,\omega )\) is convex, lower semicontinuous with \({\tilde{s}}_{t}(0,\omega )=0\) for every \(\omega \). Hence, by Pennannen [35], p. 747, \({\tilde{s}}_{t}\) is a \(\mathcal {F}_{t}\) - measurable normal integrand.

  3. See Rockafellar [37], p. 246.

  4. This means that given a pair \((X_{t},Y_{t})\) at time t, the pair is \(\mathcal {F}_{t-1}\) - measurable.

  5. \(K_{t}(\omega )\) being \(\mathcal {F}_{t}\) - measurable means that \(\{\omega \in \Omega :K_{t}(\omega )\cap A\ne \emptyset \}\in \mathcal {F}_{t}\) for every open set \(A\subset \mathbb {R}\), see Rockafellar and Wets [38], Chapter 14.

  6. For simplicity of notation, when the \(\omega \) argument is suppressed, the statements hold for all \(\omega \) a.e. \(\mathbb {P}\).

  7. These assumptions imply that \(U_{i}(z,\omega )\) is a normal integrand on \(\mathbb {R}\times \Omega \) and when taking the derivative of \(E^{i}\left[ U_{i}(z)\right] \) with respect to z, one can exchange the expectation and derivative operators.

  8. Note that when \(t=T\), expression (8) is identically zero.

  9. Note that there is no trading at time \(T+1\).

  10. We want strictly positive weightings so that all traders are included in the aggregate utility function.

  11. We write \(\lambda \gg 0\) for \(\lambda _{i}>0\) for all i.

  12. Note that when \(t=T\), expression (18) is identically zero.

  13. We make explicit the dependence of the probability measure on the stock price process \(S_{t}-v_{t}^{\lambda }\).

References

  1. Acharya, V., Pedersen, L.: Asset pricing with liquidity risk. J. Financ. Econ. 77, 375–410 (2005)

    Article  Google Scholar 

  2. Amihud, Y.: Illiquidity and stock returns: cross-section and time-series effects. J. Financ. Mark. 5, 31–56 (2002)

    Article  Google Scholar 

  3. Bank, P., Baum, D.: Hedging and portfolio optimization in financial markets with a large trader. Math. Finance 14(1), 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bank, P., Kramkov, D.: A model for a large investor trading at market indifference prices. II: continuous-time case. Ann. Appl. Probab. 25(2), 2708–2742 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, P., Kramkov, D.: A model for a large investor trading at market indifference prices. I: single-period case. Finance Stochast. 19, 449–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Rephael, A., Kadan, O., Wohl, A.: The diminishing liquidity premium. J. Financ. Quant. Anal. 50, 197–229 (2015)

    Article  Google Scholar 

  7. Biais, B., Glosten, L., Spatt, C.: Market microstructure: a survey of microfoundations, empirical results, and policy implications. J. Financ. Mark. 8, 217–264 (2005)

    Article  Google Scholar 

  8. Breeden, D.: An intertemporal asset pricing model with stochastic consumption aninvestment opportunities. J. Financ. Econ. 7, 265–296 (1979)

    Article  MATH  Google Scholar 

  9. Brennan, M., Subrahmanyam, A.: Market microstructure and asset pricing: on the compensation for illiquidity in stock returns. J. Financ. Econ. 41, 441–464 (1996)

    Article  Google Scholar 

  10. Cetin, U., Jarrow, R., Protter, P.: Liquidity risk and arbitrage pricing theory. Finance Stochast. 8, 311–341 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cetin, U., Rogers, L.C.B.: Modeling liquidity effects in discrete time. Math. Finance 17(1), 15–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, J., Larsen, K.: Taylor approximation of incomplete Radner equilibrium models. Finance Stochastics 19, 653–679 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christensen, P., Larsen, K.: Incomplete continuous time securities markets with stochastic income volatility. Rev. Asset Pricing Stud. 4(2), 247–285 (2014)

    Article  Google Scholar 

  14. Cuoco, C., He, H.: Dynamic equilibrium in infinite-dimensional economies with incomplete financial markets. Working Paper, Wharton (1994)

  15. Cuoco, C., He, H.: Dynamic aggregation and computation of equilibria in finite-dimensional economies with incomplete financial markets. Ann. Econ. Finance 2, 265–296 (2001)

    Google Scholar 

  16. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Detemple, J., Murthy, S.: Equilibrium asset prices and no-arbitrage with portfolio constraints. Rev. Financ. Stud. 10(4), 1133–1174 (1997)

    Article  Google Scholar 

  18. Hugonnier, J.: Rational asset pricing bubbles and portfolio constraints. J. Econ. Theory 147, 2260–2302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jagannathan, R., Schaumburg, E., Zhou, G.: Cross-sectional asset pricing tests. Ann. Rev. Financ. Econ. 2, 49–74 (2010)

    Article  Google Scholar 

  20. Jarrow, R.: Market manipulation, bubbles, corners and short squeezes. J. Financ. Quant. Anal. 27, 311–336 (1992)

    Article  Google Scholar 

  21. Jarrow, R.: Derivative security markets, market manipulation and option pricing. J. Financ. Quant. Anal. 29, 241–261 (1994)

    Article  Google Scholar 

  22. Jarrow, R.: Asset price bubbles. Ann. Rev. Financ. Econ. 07, 201–218 (2015)

    Article  Google Scholar 

  23. Jarrow, R.: Bubbles and multiple-factor asset pricing models. Int. J. Theor. Appl. Finance 19(1), 1650007 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jarrow, R.: Asset market equilibrium with liquidity risk. Ann. Finance 14, 253–288 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jarrow, R.: On the existence of competitive equilibrium in frictionless and incomplete stochastic asset markets. Math. Financ. Econ. 11(4), 455–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jarrow, R.: Continuous-Time Asset Pricing Theory: A Martingale-Based Approach. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  27. Jarrow, R., Larsson, M.: The meaning of market efficiency. Math. Finance 22(1), 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jarrow, R., Larsson, M.: Representative agent equilibrium, forthcoming. J. Math, Econ (2015)

    Google Scholar 

  29. Jarrow, R., Protter, P.: Liquidity risk and option pricing theory. In: Birge, J.R., Linetsky, V. (eds.) Handbooks in OR&MS, vol. 15. Elsevier B. V, New York City (2008)

    Google Scholar 

  30. Kardaras, C., Xing, H., Zitkovic, G.: Incomplete Stochastic Equilibria with Exponential Utilities Close to Pareto Optimality. SSRN (2015)

  31. Larsen, K.: Continuous equilibria with heterogeneous preferences and unspanned endowments. Working Paper, Carnegie Mellon University (2009)

  32. Larsen, K., Sae-Sue, T.: Radner equilibrium in incomplete levy models. Working Paper, Carnegie Mellon University (2016)

  33. Merton, R.C.: An intertemporal capital asset pricing model. Econometrica 41, 867–888 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pastor, L., Stambaugh, R.: Liquidity risk and expected stock returns. J. Polit. Econ. 111, 642–685 (2003)

    Article  Google Scholar 

  35. Pennanen, T.: Optimal investment and contingent claim valuation in illiquid markets. Finance Stochast. 18, 733–754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Radner, R.: Equilibrium under uncertainty. Econometrica 36(1), 31–58 (1982)

    Article  MATH  Google Scholar 

  37. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  38. Rockafellar, R., Wets, R.: Variational Analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Simmons, G.: Topology and Modern Analysis. McGraw-Hill Book Company, New York (1963)

    MATH  Google Scholar 

  40. Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic Publishers, Norwell, MA (1998)

    Book  MATH  Google Scholar 

  41. Zitkovic, G.: Financial equilibria in the semimartingale setting: complete markets and markets with withdrawal constraints. Finance Stochast. 10, 99–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zitkovic, G.: An example of a stochastic equilibrium with incomplete markets. Finance Stochast. 16, 177–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Jarrow.

Appendix

Appendix

1.1 Proof of Theorem 9.

The proof needs the following lemma.

Lemma 14

(Existence of a Representative Trader Asset Market that Reflects the Asset Market’s Aggregate Optimal Demands) Given is an asset market \(\big (\left( \varphi ,K,N\right) ,\big (\mathbb {P}_{i},U_{i},(x_{i},y_{i})\big ){}_{i=1}^{I}\big )\).

Consider the collection of representative trader asset markets

\(\left( (\varphi ,K,N),(\mathbb {P},U(\lambda ),(0,N))\right) \) indexed by \(\lambda \gg 0\).

Let S be a price process for all of these asset markets.

For each \(\lambda \gg 0\), assume the existence of an equivalent martingale measure \(\mathbb {M}(S-v^{\lambda })\) for the aggregate demands \(\sum _{i=1}^{I}\Delta X_{t+1}^{i}\) where \(\Delta X_{t+1}^{i}\) is the \(i^{th}\) trader’s optimal trading strategy.

Assume there exists a unique \(\lambda ^{*}\gg 0\) such that

$$\begin{aligned} \lambda _{i}^{*}=\frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}_{i}}\frac{1}{U_{i}'(Y_{T+1}^{i})}>0\qquad \mathrm {for\, all}\,i \end{aligned}$$
(28)

where \(Y_{T+1}^{i}=-y_{i}-\varphi _{T}\left( -x_{i}-\sum _{t=0}^{T-1}\Delta X_{t+1}^{i}\right) S_{T}-\sum _{t=0}^{T-1}\varphi _{t}(\Delta X_{t+1}^{i})S_{t}\).

Then, the representative trader asset market indexed by this unique \(\lambda ^{*}\) reflects the asset market’s aggregate optimal demands for the price process S.

Proof

The representative trader’s optimal trading strategy satisfies

$$\begin{aligned} E_{t}\left[ U'(Y_{T+1}^{\lambda },\lambda )\left( \varphi '_{t}(\Delta X_{t+1}^{\lambda })\left( S_{t}-v_{t}^{\lambda }\right) -\varphi '_{T}(\Delta X_{T+1}^{\lambda })\left( S_{t}-v_{t}^{\lambda }\right) \right) \right] =0 \end{aligned}$$
(29)

for \(t\in \{0,\ldots ,T-1\}\)

where \(Y_{T+1}^{\lambda }=-\varphi _{T}\left( -N-\sum _{t=0}^{T-1}\Delta X_{t+1}^{\lambda }\right) S_{T}-\sum _{t=0}^{T-1}\varphi _{t}(\Delta X_{t+1}^{\lambda })S_{t}\).

From expression (16) we have

$$\begin{aligned} \lambda _{i}\frac{d\mathbb {P}_{i}}{d\mathbb {P}}U_{i}'({\tilde{Y}}_{T+1}^{i})=U'(Y_{T+1}^{\lambda },\lambda )\qquad \mathrm {for\,all}\,i \end{aligned}$$

where \(Y_{T+1}^{\lambda }=\sum _{i=1}^{I}{\tilde{Y}}_{T+1}^{i}\).

Substitution into expression (29) gives

$$\begin{aligned} E_{t}^{i}\left[ \lambda _{i}U_{i}'({\tilde{Y}}_{T+1}^{i})\left( \varphi '_{t}(\Delta X_{t+1}^{\lambda })\left( S_{t}-v_{t}^{\lambda }\right) -\varphi '_{T}(\Delta X_{T+1}^{\lambda })(S_{t}-v_{t}^{\lambda })\right) \right] =0. \end{aligned}$$
(30)

Next, given \({\tilde{Y}}_{T+1}^{i}\), define \(\Delta {\tilde{X}}_{t}^{i}\) as the solutions to

$$\begin{aligned} 0\in E_{t}^{i}\left[ U_{i}'({\tilde{Y}}_{T+1}^{i})\left( \varphi '_{t}(\Delta {\tilde{X}}_{t+1}^{i})S_{t}-\varphi '_{T}(\Delta {\tilde{X}}_{T+1}^{i})S_{T}\right) \right] +\mathcal {N}_{K_{t}}(\Delta {\tilde{X}}_{t+1}^{i}) \end{aligned}$$

for \(t\in \{0,\ldots ,T-1\}\) where \(\Delta {\tilde{X}}_{t}^{i}\) satisfies the self-financing condition (2).

By Theorem 2 we know a solution exists to these equations. By uniqueness of the optimal trading strategy, this implies \(\Delta {\tilde{X}}_{t}^{i}\) are the solutions to trader i’s optimization problem.

To complete the proof, we need to show that \(\Delta X_{t+1}^{\lambda }=\sum _{i=1}^{I}\Delta {\tilde{X}}_{t+1}^{i}\).

(Step 1) At time T because all shares must be liquidated, \(-N=\Delta X_{T+1}^{\lambda }=\sum _{i=1}^{I}\Delta {\tilde{X}}_{T+1}^{i}\).

(Step 2) Since \(\lambda \gg 0\) is arbitrary, choose \(\lambda _{i}^{*}\) such that

$$\begin{aligned} \lambda _{i}^{*}=\frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}_{i}}\frac{1}{U_{i}'({\tilde{Y}}_{T+1}^{i})}>0\qquad \mathrm {for\,all}\,i \end{aligned}$$

where \(\mathbb {M}(S-v^{\lambda ^{*}})\) is the equivalent probability measure assumed to exist in the hypothesis of the theorem.

Substitution of \(\lambda ^{*}\) into expression (30) gives

$$\begin{aligned} E_{t}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\left( \varphi '_{t}(\Delta X_{t+1}^{\lambda ^{*}})(S_{t}-v_{t}^{\lambda ^{*}})-\varphi '_{T}(\Delta X_{T+1}^{\lambda ^{*}})(S_{T}-v_{T}^{\lambda ^{*}})\right) \right] =0 \end{aligned}$$

for \(t\in \{0,\ldots ,T-1\}\). This implies

$$\begin{aligned} \varphi '_{t}(\Delta X_{t+1}^{\lambda ^{*}})(S_{t}-v_{t}^{\lambda ^{*}})=E_{t}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\varphi '_{T}(\Delta X_{T+1}^{\lambda ^{*}})(S_{T}-v_{T}^{\lambda ^{*}})\right] \end{aligned}$$

for \(t\in \{0,\ldots ,T-1\}\).

Using the definition of \(\mathbb {M}(S-v^{\lambda ^{*}})\) as an equivalent martingale measure for the aggregate demands we have that

$$\begin{aligned} \varphi '_{t}\left( \sum _{i=1}^{I}\Delta {\tilde{X}}_{t+1}^{i})(S_{t}-v_{t}^{\lambda ^{*}}\right) =E_{t}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\left( \varphi '_{T}\left( \sum _{i=1}^{I}\Delta {\tilde{X}}_{T+1}^{i}\right) (S_{T}-v_{T}^{\lambda ^{*}})\right) \right] \end{aligned}$$

for \(t\in \{0,\ldots ,T\}\).

These last two equations combined with step 1 imply the result. This follows by backward induction.

Indeed, at time \(T-1\) we have

$$\begin{aligned}&\varphi '_{T-1}(\Delta X_{T}^{\lambda ^{*}})(S_{T-1}-v_{T-1}^{\lambda ^{*}})=E_{T-1}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\left( \varphi '_{T}(\Delta X_{T+1}^{\lambda ^{*}})(S_{T}-v_{T}^{\lambda ^{*}})\right) \right] \\&\quad =E_{T-1}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\left( \varphi '_{T}\left( \sum _{i=1}^{I}\Delta {\tilde{X}}_{T+1}^{i}\right) (S_{T}-v_{T}^{\lambda ^{*}})\right) \right] \end{aligned}$$

since \(\Delta X_{T+1}^{\lambda ^{*}}=\sum _{i=1}^{I}\Delta {\tilde{X}}_{T+1}^{i}\). But, this

\(=\varphi '_{T-1}(\sum _{i=1}^{I}\Delta {\tilde{X}}_{T}^{i})(S_{T-1}-v_{T-1}^{\lambda ^{*}})\). This implies

\(\varphi '_{T-1}(\Delta X_{T}^{\lambda ^{*}})=\varphi '_{T-1}(\sum _{i=1}^{I}\Delta {\tilde{X}}_{T}^{i})\).

Since \(\varphi '_{T-1}\) is strictly increasing we get \(\Delta X_{T}^{\lambda ^{*}}=\sum _{i=1}^{I}\Delta {\tilde{X}}_{T}^{i}\).

Next, we note that by the law of iterated expectations,

$$\begin{aligned}&\varphi '_{T-2}(\Delta X_{T-1}^{\lambda ^{*}})(S_{T-2}-v_{T-2}^{\lambda ^{*}})=E_{t}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\varphi '_{T-1}(\Delta X_{T}^{\lambda ^{*}})(S_{T-1}-v_{T-1}^{\lambda ^{*}})\right] \hbox { and }\\&\quad \varphi '_{T-2}\left( \sum _{i=1}^{I}\Delta {\tilde{X}}_{T-1}^{i}\right) (S_{T-2}-v_{T-2}^{\lambda ^{*}})\\&\qquad =E_{t}\left[ \frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}}\left( \varphi '_{T-1}\left( \sum _{i=1}^{I}\Delta {\tilde{X}}_{T}^{i}\right) (S_{T-1}-v_{T-1}^{\lambda ^{*}})\right) \right] . \end{aligned}$$

We can now repeat the previous argument at time \(T-2\) to obtain \(\Delta X_{T-1}^{\lambda ^{*}}=\sum _{i=1}^{I}\Delta {\tilde{X}}_{T-1}^{i}\). Continuing in this fashion to time 0 completes the proof. \(\square \)

This lemma is key in the proof for the existence of an economic equilibrium in the original asset market. We emphasize again that this lemma does not require the given price process S to be an equilibrium price process for the original asset market or the representative trader asset market.

Proof

By Lemma 14, given the equilibrium price process S, the representative agent asset market \(\left( (\mathbb {P},K,N),(\mathbb {P},U(\lambda ^{*}),(0,N))\right) \) reflects the original market’s optimal wealths with \(\lambda _{i}^{*}=\frac{d\mathbb {M}(S-v^{\lambda ^{*}})}{d\mathbb {P}_{i}}\frac{1}{U_{i}'({\tilde{Y}}_{T+1}^{i})}>0\qquad \mathrm {for\,all}\,i\), i.e.

$$\begin{aligned} \Delta X_{t+1}^{\lambda ^{*}}=\sum _{i=1}^{I}\Delta X_{t+1}^{i} \end{aligned}$$

for \(t\in \{0,\ldots ,T-1\}\) a.s. \(\mathbb {P}\) where \(\Delta X_{t+1}^{\lambda ^{*}}\) are the optimal demands of the representative trader. But, in the asset market’s equilibrium, \(0=\sum _{i=1}^{I}\Delta X_{t+1}^{i}\). Hence, \(\Delta X_{t+1}^{\lambda ^{*}}=0\). This implies that \(X_{t+1}^{\lambda ^{*}}=X_{t}^{\lambda ^{*}}\in int(K_{t})\), \(v_{t}^{\lambda ^{*}}=0\) for all t, and \(\lambda _{i}^{*}=\frac{d\mathbb {M}(S)}{d\mathbb {P}_{i}}\frac{1}{U_{i}'(Y_{T+1}^{i})}\). Hence, the representative trader asset market is in equilibrium with price process S. This completes the proof. \(\square \)

1.2 Proof of Theorem 10

Proof

(Existence) (Step 1) Consider the collection of representative trader asset markets

\(\left( (\varphi ,K,N),(\mathbb {P},U(\lambda ),(0,N))\right) \) indexed by \(\lambda \gg 0\). Fix an arbitrary \(\lambda \). By Theorem 8, for the price process \(S^{\lambda }\), the representative trader with the aggregate utility function weights \(\lambda \) does not trade, i.e. \(\Delta X_{t+1}^{\lambda }=0\). This implies that \(X_{t+1}^{{\tilde{\lambda }}}=X_{t}^{{\tilde{\lambda }}}\in int(K_{t})\), \(v_{t}^{{\tilde{\lambda }}}=0\) for all t.

Next, consider the asset market \(\left( \left( \varphi ,K,N\right) ,\left( \mathbb {P}_{i},U_{i},(x_{i},y_{i})\right) {}_{i=1}^{I}\right) \) with the price process \(S^{\lambda }\). Let \(\Delta X_{t+1}^{i}(S^{\lambda })\) for \(t\in \{0,\ldots ,T-1\}\) be the optimal trading strategy of trader i in this market. Note the dependence of trader’s demands on \(S^{\lambda }\).

(Step 2) Fix the \({\tilde{\lambda }}\gg 0\) from expression (21). Jointly consider the asset market \(\left( \left( \varphi ,K,N\right) ,\left( \mathbb {P}_{i},U_{i},(x_{i},y_{i})\right) {}_{i=1}^{I}\right) \) and the collection of representative trader asset markets \(\left( (\varphi ,K,N),(\mathbb {P},U(\lambda ),(0,N))\right) \), all with the same price process \(S^{{\tilde{\lambda }}}\equiv {\tilde{S}}\).

By the assumption regarding the existence of \(\mathbb {M}({\tilde{S}}-v^{{\tilde{\lambda }}})\), the hypothesis of Theorem 14 is satisfied. Hence, there exists a \(\lambda ^{*}\) such that a representative trader \(U(\lambda ^{*})\) reflects these optimal demands, i.e.

$$\begin{aligned} \Delta X_{t+1}^{\lambda ^{*}}=\sum _{i=1}^{I}\Delta X_{t+1}^{i}({\tilde{S}}_{t}). \end{aligned}$$

The unique \(\lambda ^{*}\) for the price process \({\tilde{S}}\) is

$$\begin{aligned} \lambda _{i}^{*}=\frac{d\mathbb {M}({\tilde{S}}-v^{\lambda ^{*}})}{d\mathbb {P}_{i}}\frac{1}{U_{i}'(Y_{T+1}^{i}({\tilde{S}}))}>0\qquad \mathrm {for\, all}\,i \end{aligned}$$
(31)

with \(Y_{T+1}^{i}({\tilde{S}}_{t})=-y_{i}-\varphi _{T}\left( -x_{i}-\sum _{t=0}^{T-1}\Delta X_{t+1}^{i}\right) {\tilde{S}}_{T}-\sum _{t=0}^{T-1}\varphi _{t}(\Delta X_{t+1}^{i}){\tilde{S}}_{t}\).

(Step 3) We claim that \(S^{{\tilde{\lambda }}}\) is an equilibrium price process for the asset market and the representative trader asset market \(((\varphi ,K,N),(\mathbb {P},U({\tilde{\lambda }}),(0,N)))\).

(Part a) First, (Step 1) shows that \(\Delta X_{t+1}^{{\tilde{\lambda }}}=0\) since the representative trader \(U({\tilde{\lambda }})\)’s optimal trading strategy is not to trade given \({\tilde{S}}=S^{{\tilde{\lambda }}}\). This implies that \({\tilde{S}}\) is an equilibrium price process for the representative trader asset market \(\left( (\varphi ,N),(\mathbb {P},U({\tilde{\lambda }}),(0,N))\right) \).

(Part b) The uniqueness of the solution to expression (31) combined with expression (21) gives \(\lambda ^{*}={\tilde{\lambda }}\).

This implies that \(\Delta X_{t+1}^{{\tilde{\lambda }}}=\sum _{i=1}^{I}\Delta X_{t+1}^{i}(S^{{\tilde{\lambda }}})\). Hence, \(0=\sum _{i=1}^{I}\Delta X_{t+1}^{i}(S^{{\tilde{\lambda }}})\), i.e. aggregate optimal demand equals supply. This proves that \(S^{{\tilde{\lambda }}}\) is an equilibrium price process for the asset market.

(Step 4) By Theorem 7, since \(\Delta X_{t+1}^{{\tilde{\lambda }}}=0\), \(\varphi '_{t}(\Delta X_{t+1}^{{\tilde{\lambda }}}(S^{{\tilde{\lambda }}}))(S_{t}^{{\tilde{\lambda }}}+v^{{\tilde{\lambda }}})=S_{t}^{{\tilde{\lambda }}}\) for \(t\in \{0,\ldots ,T-1\}\) is a martingale under \(d\mathbb {Q}_{{\tilde{\lambda }}}=\frac{U'(-\varphi _{T}(-N)S_{T}^{{\tilde{\lambda }}},{\tilde{\lambda }})}{E\left[ U'(-\varphi _{T}(-N)S_{T}^{{\tilde{\lambda }}},{\tilde{\lambda }})\right] }d\mathbb {P}\) because \(\Delta X_{t+1}^{{\tilde{\lambda }}}(S^{{\tilde{\lambda }}})=0\) for \(t\in \{0,\ldots ,T-1\}\), \(\varphi '_{t}(0)=1\), and \(v^{{\tilde{\lambda }}}=0\).

(Characterization)

\(S_{t}^{{\tilde{\lambda }}}\) for \(t\in \{0,\ldots ,T-1\}\) a martingale under \(\mathbb {Q}_{{\tilde{\lambda }}}\)

implies that \(S_{t}^{{\tilde{\lambda }}}\rho _{t}\) is a martingale under \(\mathbb {P}\). Thus,

$$\begin{aligned}&E_{t}\left[ \frac{S_{t+1}^{{\tilde{\lambda }}}}{S_{t}^{{\tilde{\lambda }}}}\frac{\rho _{t+1}}{\rho _{t}}\right] =1\\&E_{t}\left[ \frac{S_{t+1}^{{\tilde{\lambda }}}}{S_{t}^{{\tilde{\lambda }}}}\right] E_{t}\left[ \frac{\rho _{t+1}}{\rho _{t}}\right] +cov_{t}\left( \frac{S_{t+1}^{{\tilde{\lambda }}}}{S_{t}^{{\tilde{\lambda }}}},\frac{\rho _{t+1}}{\rho _{t}}\right) =1\\ \end{aligned}$$

But, \(E_{t}\left[ \frac{\rho _{t+1}}{\rho _{t}}\right] =1\). Yielding

$$\begin{aligned} E_{t}\left[ \frac{S_{t+1}^{{\tilde{\lambda }}}}{S_{t}^{{\tilde{\lambda }}}}-1\right] =-cov_{t}\left( \frac{S_{t+1}^{{\tilde{\lambda }}}}{S_{t}^{{\tilde{\lambda }}}},\frac{\rho _{t+1}}{\rho _{t}}\right) . \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrow, R. Capital asset market equilibrium with liquidity risk, portfolio constraints, and asset price bubbles. Math Finan Econ 13, 115–146 (2019). https://doi.org/10.1007/s11579-018-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-018-0223-6

Keywords

JEL Classification

Navigation