Skip to main content
Log in

Rheological and Interfacial Properties of Colloidal Electrolytes

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Electric conductivity and rheological responses of colloidal electrolytes consisting of lithium bis(trifluoromethanesulfon) imide, polyethylene glycol (PEG) oligomer, and fumed silica have been investigated. Incorporating silica could improve ionic conductivity of the electrolytes at the same lithium/oxygen ratios. The colloidal electrolytes demonstrate a sol to gel transition with increasing silica content while they exhibit shear thickening behaviors during steady flow at intermediate range of strain rate. The presence of lithium salt, on the one hand, could lower the crystallinity of PEG or forbid the crystallization and on the other hand, interferes the chain adsorption on the surface of silica. Furthermore, lithium salt strongly retards the segmental relaxation of PEG in the colloidal electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feuillade, G.; Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5, 63–69.

    Article  CAS  Google Scholar 

  2. Baskoro, F.; Wong, H. Q.; Yen, H. J. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithiumion battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971.

    Article  CAS  Google Scholar 

  3. Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, P. F.; Wang, Q. S.; Li, K.; Ping, P.; Sun, J. H. The combustion behavior of large scale lithium titanate battery. Sci. Rep. 2015, 5, 7788–7799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lyu, Y. F.; Zhang, Z. J.; Liu, C.; Geng, Z.; Gao, L. C.; Chen, Q. Random binary brush architecture enhances both ionic conductivity and mechanical strength at room temperature. Chinese J. Polym. Sci. 2018, 36, 78–84.

    Article  CAS  Google Scholar 

  6. Santhosha, A. L.; Bhattacharyya, A. J. A few case studies on the correlation of particle network and its stability on the ionic conductivity of solid-liquid composite electrolytes. J. Phys. Chem. B 2015, 119, 11317–11325.

    Article  CAS  PubMed  Google Scholar 

  7. Pfaffenhuber, C.; Göbel, M.; Popovic, J.; Maier, J. Soggy-sand electrolytes: Status and perspectives. Phys. Chem. Chem. Phys. 2013, 15, 18318–18335.

    Article  CAS  Google Scholar 

  8. Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77, 183–197.

    Article  CAS  Google Scholar 

  9. Lee, Y. S.; Lee, J. H.; Choi, J. A.; Yoon, W. Y.; Kim, D. W. Composite polymer electrolytes: Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv. Funct. Mater. 2013, 23, 917–917.

    Article  CAS  Google Scholar 

  10. Fan, J.; Raghavan, S. R.; Yu, X. Y.; Khan, S. A.; Fedkiw, P. S.; Hou, J.; Baker, G. L. Composite polymer electrolytes using surface- modified fumed silicas: Conductivity and rheology. Solid State Ionics 1998, 111, 117–123.

    Article  CAS  Google Scholar 

  11. Khan, S. A.; Fedkiw, P. S.; Baker, G. L. Composite polymer electrolytes using fumed silica fillers: Synthesis, rheology and electrochemistry. Office Sci. Tech. Inform. Tech. Rep. 1999, 1, 82–95.

    Google Scholar 

  12. Raghavan, S. R.; Riley, M. W.; Fedkiw, P. S.; Khan, S. A. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: Dynamic rheology and microstructure. Chem. Mater. 1998, 10, 244–251.

    Article  CAS  Google Scholar 

  13. Fan, J.; Fedkiw, P. S. Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium salk. J. Electrochem. Soc. 1997, 144, 399–408.

    Article  CAS  Google Scholar 

  14. Walls, H. J.; Zhou, J.; Yerian, J. A.; Fedkiw, P. S.; Khan, S. A.; Stowe, M. K.; Baker, G. L. Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry. J. Power Sources 2000, 89, 156–162.

    Article  CAS  Google Scholar 

  15. Li, Y. X.; Fedkiw, P. S.; Khan, S. A. Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte. Electrochim. Acta 2002, 47, 3853–3861.

    Article  CAS  Google Scholar 

  16. Liu, K. W.; Cheng, C. F.; Zhou, L. Y.; Zou, F.; Liang, W. F.; Wang, M. Y.; Wang, M. Y.; Zhu, Y. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. J. Power Sources 2019, 423, 297–304.

    Article  CAS  Google Scholar 

  17. Ye, Y. L.; Xiao, H.; Reaves, K.; McCulloch, B.; Mike, J. F.; Lutkenhaus, J. L. Effect of nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries. ACS Appl. Nano Mater. 2018, 1, 2774–2784.

    Article  CAS  Google Scholar 

  18. Shen, B. H.; Armstrong, B. L.; Doucet, M.; Heroux, L.; Browning, J. F.; Agamalian, M.; Tenhaeff, W. E.; Veith, G. M. Shear thickening electrolyte built from sterically stabilized colloidal particles. ACS Appl. Mater. Interfaces 2018, 10, 9424–9434.

    Article  CAS  PubMed  Google Scholar 

  19. Veith, G. M.; Armstrong, B. L.; Wang, H.; Kalnaus, S.; Tenhaeff, W. E.; Patterson, M. L. Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett. 2017, 2, 2084–2088.

    Article  CAS  Google Scholar 

  20. Ding, J.; Tian, T. F.; Meng, Q.; Guo, Z. P.; Li, W. H.; Zhang, P.; Ciacchi, F. T.; Huang, J.; Yang, W. R. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 2013, 3, 2485.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pfaffenhuber, C.; Sörgel, S.; Weichert, K.; Bele, M.; Mundinger, T.; Gobel, M.; Maier, J. In situ recording of particle network formation in liquids by ion conductivity measurements. J. Am. Chem. Soc. 2011, 133, 14514–14517.

    Article  CAS  PubMed  Google Scholar 

  22. Vélez, J. F.; Aparicio, M.; Mosa, J. Effect of lithium salt in nanostructured silica-polyethylene glycol solid electrolytes for Li-ion battery applications. J. Phys. Chem. C 2016, 120, 22852–22864.

    Article  CAS  Google Scholar 

  23. Jarosik, A.; Traub, U.; Maier, J.; Bunde, A. Ion conducting particle networks in liquids: Modeling of network percolation and stability. Phys. Chem. Chem. Phys. 2011, 13, 2663–2666.

    Article  CAS  PubMed  Google Scholar 

  24. Das, S. K.; Bhattacharyya, A. J. Oxide particle surface chemistry and ion transport in “soggy sand” electrolytes. J. Phys. Chem. C 2009, 113, 6699–6705.

    Article  CAS  Google Scholar 

  25. Zhou, H.; Fedkiw, P. S. Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 2004, 166, 275–293.

    Article  CAS  Google Scholar 

  26. Bhattacharyya, A. J.; Maier, J.; Bock, R.; Lange, F. F. New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in “soggy sand” electrolytes. Solid State Ionics 2004, 177, 2565–2568.

    Article  CAS  Google Scholar 

  27. Bhattacharyya, A. J.; Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater. 2004, 16, 811–814.

    Article  CAS  Google Scholar 

  28. Kumar, B.; Rodrigues, S. J. Ionic conductivity of colloidal electrolytes. Solid State Ionics 2004, 167, 91–97.

    Article  CAS  Google Scholar 

  29. Zhang, Q. X.; Wu, C.; Song, H.; Zheng, Q. Rheology of fumed silica/polypropylene glycol dispersions. Polymer 2018, 148, 400–406.

    Article  CAS  Google Scholar 

  30. Zheng, Z.; Song, Y.; Yang, R.; Zheng, Q. Direct evidence for percolation of immobilized polymer layer around nanoparticles accounting for sol-gel transition in fumed silica dispersions. Langmuir 2015, 31, 13478–13487.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, Z.; Song, Y.; Xu, H.; Zheng Q. Thickening of the immobilized polymer layer using trace amount of amine and its role in promoting gelation of colloidal nanocomposites. Macromolecules 2015, 48, 9015–9023.

    Article  CAS  Google Scholar 

  32. Ma, T.; Yang, R.; Zheng, Z.; Song, Y. Rheology of fumed silica/polydimethylsiloxane suspensions. J. Rheol. 2017, 61, 205–215.

    Article  CAS  Google Scholar 

  33. Ma, F.; Xu, B.; Song, Y.; Zheng, Q. Influence of molecular weight on molecular dynamics and dynamic rheology of polypropylene glycol filled with silica. RSC Adv. 2018, 8, 31972–31978.

    Article  CAS  Google Scholar 

  34. Mathias, J.; Wannemacher, G. Basic characteristics and applications of aerosil: 30. The chemistry and physics of the aerosil surface. J. Colloid Interf. Sci. 1988, 125, 61–68.

    Article  CAS  Google Scholar 

  35. Raghavan, S. R.; Walls, H. J.; Khan, S. A. Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding. Langmuir 2000, 16, 7920–7930.

    Article  CAS  Google Scholar 

  36. Napolitano, S.; Capponi, S.; Vanroy, B. Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 2013, 36, 61–97.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C. Q.; Huang, Y. H.; Liao, B.; Zhao, S. L.; Lin, G.; Cong, G. M. Effects of the conductivity of sulfonated poly(phenylene oxide) lithium by the complexation of poly(ethylene oxide). Polym. Adv. Tech. 2015, 7, 697–700.

    Article  Google Scholar 

  38. Di Noto, V.; Münchow, V.; Vittadello, M.; Collet, J. C.; Lavina, S. Synthesis and characterization of lithium and magnesium complexes based on [EDTA][PEG400]2 and [EDTA]3[PEG400]7. Macromol. Chem. Phys. 2002, 203, 1211–1227.

    Article  CAS  Google Scholar 

  39. Barnes, H. Shearthickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in newtonian liquids. J. Rheol. 1989, 33, 329–366.

    Article  CAS  Google Scholar 

  40. Brown, E.; Jaeger, H. M. Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 2009, 103, 086001.

    Article  CAS  PubMed  Google Scholar 

  41. Fall, A.; Bertrand, F.; Ovarlez, G.; Bonn, D. Shear thickening of cornstarch suspensions. J. Rheol. 2012, 56, 145–150.

    Article  CAS  Google Scholar 

  42. Saito, Y.; Hirose, Y.; Otsubo, Y. Shear-induced reversible gelation of nanoparticle suspensions flocculated by poly(ethylene oxide). Colloid. Surf. A: Physicochem. Eng. Aspects 2011, 384, 40–46.

    Article  CAS  Google Scholar 

  43. Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition- dependent sol and gel behaviors and energy-mediated shear responses. J. Rheol. 2015, 59, 971–993.

    Article  CAS  Google Scholar 

  44. Boersma, W. H.; Laven, J.; Stein, H. N. Shear thickening (dilatancy) in concentrated dispersions. AICHE J. 1990, 36, 321–332.

    Article  CAS  Google Scholar 

  45. Wagner, N. J.; Brady, J. F. Shear thickening in colloidal dispersions. Phys. Today 2009, 62, 27–32.

    Article  CAS  Google Scholar 

  46. Cheng, X.; Mccoy, J. H.; Israelachvili, J. N.; Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 2011, 333, 1276–1279.

    Article  CAS  PubMed  Google Scholar 

  47. Brown, E.; Forman, N. A.; Orellana, C. S.; Zhang, H. J.; Maynor, B. W.; Betts, D. E.; DeSimone, J. M.; Jaeger, H. M. Generality of shear thickening in dense suspensions. Nat. Mater. 2010, 9, 220–224.

    Article  CAS  PubMed  Google Scholar 

  48. Waitukaitis, S. R.; Jaeger, H. M. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487, 205–209.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, B.; Song, Y.; Zheng, Q. Molecular relaxation and rheological behaviors of fumed silica/low-molecular weight polyethylene glycol suspensions. Acta Polymerica Sinica (in Chinese) 2017, 1832–1840.

    Google Scholar 

  50. Nordström, J.; Aguilera, L.; Matic, A. Effect of lithium salt on the stability of dispersions of fumed silica in the ionic liquid BMImBF4. Langmuir 2012, 28, 4080–4085.

    Article  CAS  PubMed  Google Scholar 

  51. Heinrich, G.; Klüppel, M.; Vilgis, T. A. Reinforcement of elastomers. Curr. Opin. Solid Struct. Mater. 2002, 6, 195–203.

    Article  CAS  Google Scholar 

  52. Zhu, Z. Y.; Thompson, T.; Wang, S. Q.; von Meerwall, E. D.; Halasa, A. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 2005, 38, 8816–8824.

    Article  CAS  Google Scholar 

  53. Filippone, G.; Romeo, G.; Acierno, D. Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: Filler network and hydrodynamic contributions. Langmuir 2010, 26, 2714–2720.

    Article  CAS  PubMed  Google Scholar 

  54. Bailly, M.; Kontopoulou, M.; El Mabrouk, K. Effect of polymer/ filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 2010, 51, 5506–5515.

    Article  CAS  Google Scholar 

  55. Wen, Y. H.; Lu, Y. Y.; Dobosz, K. M.; Archer, L. A. Structure, ion transport, and rheology of nanoparticle salts. Macromolecules 2014, 47, 4479–4492.

    Article  CAS  Google Scholar 

  56. Kim, S. Y.; Meyer, H. W.; Saalwächter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: Effects of polymer molecular weight, temperature and solvent dilution. Macromolecules 2012, 45, 4225–4237.

    Article  CAS  Google Scholar 

  57. Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules 2013, 46, 6634–6643.

    Article  CAS  Google Scholar 

  58. Kwon, N. K.; Park, C. S.; Lee, C. H.; Kim, Y. S.; Zukoski, C. F.; Kim, S. Y. Tunable nanoparticle stability in concentrated polymer solutions on the basis of the temperature dependent solvent quality. Macromolecules 2016, 49, 2307–2317.

    Article  CAS  Google Scholar 

  59. Srivastava, S.; Shin, J. H.; Archer, L. A. Structure and rheology of nanoparticle-polymer suspensions. Soft Matter 2012, 8, 4097–4108.

    Article  CAS  Google Scholar 

  60. Zhang, X. X.; Zhang, H.; Wang, X. C.; Hu, L.; Niu, J. J. Crystallization and low temperature heat-storage behavior of PEG. J Tianjin I. Text. Sci. Technol. 1997, 16, 11–14.

    CAS  Google Scholar 

  61. Geiser, V.; Leterrier, Y.; Manson, J. E. Rheological behavior of concentrated hyperbranched polymer/silica nanocomposite suspensions. Macromolecules 2010, 43, 7705–7712.

    Article  CAS  Google Scholar 

  62. Ruggerone, R.; Geiser, V.; Vacche, S. D.; Leterrier, Y.; Manson, J. E. Immobilized polymer fraction in hyperbranched polymer/ silica nanocomposite suspensions. Macromolecules 2010, 43, 10490–10497.

    Article  CAS  Google Scholar 

  63. Boucher, V. M.; Cangialosi, D.; Alegría, A.; Colmenero, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M. Physical aging of polystyrene/ gold nanocomposites and its relation to the calorimetric Tg depression. Soft Matter 2011, 7, 3607–3620.

    Article  CAS  Google Scholar 

  64. Klonos, P.; Panagopoulou, A.; Bokobza, L.; Kyritsis, A.; Peoglos, V.; Pissis, P. Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane). Polymer 2010, 51, 5490–5499.

    Article  CAS  Google Scholar 

  65. Gainaru, C.; Böhmer, R. Oligomer-to-polymer transition of poly(propylene glycol) revealed by dielectric normal modes. Macromolecules 2009, 42, 7616–7618.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873190, 51573157, and 51790503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Hu Song or Qiang Zheng.

Additional information

Invited article for special issue of “The 100th Anniversary of the Birth of Prof. Shi-Lin Yang”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HP., Song, YH. & Zheng, Q. Rheological and Interfacial Properties of Colloidal Electrolytes. Chin J Polym Sci 37, 1039–1044 (2019). https://doi.org/10.1007/s10118-019-2334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2334-9

Keywords

Navigation