Skip to main content
Log in

Analytical drain current model of stacked oxide SiO2/HfO2 cylindrical gate tunnel FETs with oxide interface charge

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have developed an analytical drain current model of stacked oxide SiO2/HfO2 cylindrical gate tunnel field-effect transistor (CG TFET) by considering the effect of interface trap charge at Si–SiO2 interface nearby the source–channel junction. To model the channel potential, Poisson’s equation has been solved by using the parabolic approximation method in a cylindrical coordinate system with appropriate boundary conditions. The potential model has then been utilized for developing some expressions for minimum tunneling length, lateral electric field, and the drain current of stacked oxide SiO2/HfO2 CG TFET. The impact of the source/drain depletion region has been considered for improving the accuracy of the proposed model. The commercially available ATLAS™ 3D-based TCAD simulation data have been used to validate the proposed model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T Tsuchiya, Y Sato and M Tomizawa IEEE Trans. Electron. Dev. 45 1116 (1998)

    Article  ADS  Google Scholar 

  2. C Anghel, A Gupta, A Amara, S Member and A Vladimirescu IEEE Trans. Electron. Dev. 58 1649 (2011)

    Article  ADS  Google Scholar 

  3. A S Verhulst, W G Vandenberghe, K Maex and G Groeseneken Appl. Phys. Lett. 91 053102-1 (2007)

    Article  ADS  Google Scholar 

  4. M Kumar and S Jit IEEE Trans. Nanotechnol.14 597 (2015)

    Article  ADS  Google Scholar 

  5. W Y Choi, B G Park, J D Lee and T J K Liu IEEE Electron. Dev. Lett. 28 743 (2007)

    Article  ADS  Google Scholar 

  6. W Y Choi, J Y Song, J D Lee, Y J Park and B G Park IEDMTech.Dig. 955 (2005)

  7. S O Koswatta, M S Lundstrom and D E Nikonov IEEE Trans. Electron. Dev. 56 456 (2009)

    Article  ADS  Google Scholar 

  8. A C Seabaugh and Q Zhang Proc. IEEE98 2095 (2010)

    Article  Google Scholar 

  9. R Vishnoi and M J Kumar IEEE Trans. Electron. Dev.61 2264 (2014)

    Google Scholar 

  10. S Kumar et al. IEEE Trans. Electron. Dev.65 331 (2018)

    Article  ADS  Google Scholar 

  11. D B Abdi and M J Kumar Superlattices Microstruct. 86 121 (2015)

    Article  ADS  Google Scholar 

  12. J Madan and R Chaujar Superlattices Microstruct.102 17 (2017)

    Article  ADS  Google Scholar 

  13. S Kumar et al. IEEE Trans. Electron. Dev.64 960 (2017)

    Article  ADS  Google Scholar 

  14. R Vishnoi and M J Kumar IEEE Trans. Electron. Dev.61 2599 (2014)

    Article  Google Scholar 

  15. S Kumar, E Goel, K Singh, B Singh, M Kumar and S Jit IEEE Trans. Electron. Dev.63 3291 (2016)

    Article  ADS  Google Scholar 

  16. H G Virani, R B R Adari and A Kottantharayil IEEE Trans. Electron. Dev. 57 2410 (2010)

    Article  ADS  Google Scholar 

  17. K Boucart and A M Ionescu IEEE Trans. Electron. Dev.54 1725 (2007)

    Article  ADS  Google Scholar 

  18. M Kumar and S Jit IEEE Trans. Nanotechnol. 14 600 (2015)

    Article  ADS  Google Scholar 

  19. M G Bardon, H P Neves, R Puers and C Van Hoof IEEE Trans. Electron. Dev.57 827 (2010)

    Article  ADS  Google Scholar 

  20. A S Verhulst, B Sore, D Lionelli, G W Vanderverghe and G Grosenken J. Appl. Phys. 107 024518-1 (2010)

    Article  ADS  Google Scholar 

  21. N Jain, E Tutuc, S K Banerjee and L F Register Proc. Device Res. Conf. 99 (2008)

  22. YS. Jean and C Y Wu IEEE Trans. Electron. Dev.44 441 (1997)

    Article  ADS  Google Scholar 

  23. Y S Yu, N Cho, S W Hwang and D Ahn IEEE Trans. Electron. Dev.57 3176 (2010)

    Article  ADS  Google Scholar 

  24. D B Abdi and M J Kumar IEEE Trans. Electron. Dev.63 3663 (2016)

    Article  ADS  Google Scholar 

  25. R Vishnoi and M J Kumar IEEE Trans. Electron. Dev.61 3054 (2014)

    Article  ADS  Google Scholar 

  26. S Das and G P Mishra Adv. Nat. Sci. Nanosci. Nanotechnol. 6 035005-1 (2015)

    ADS  Google Scholar 

  27. E O Kane J. Phys. Chem. Solids. 12 181 (1960)

    Article  ADS  Google Scholar 

  28. ATLAS User’s Manual (Santa Clara: Silvaco Inc.) (2013)

  29. Z X Chen et al. IEEE Trans. Electron. Dev.30 754 (2009)

    Article  Google Scholar 

  30. H R T Khaveh and S Mohammadi IEEE Trans. Electron. Dev.63 5021 (2016)

    Article  ADS  Google Scholar 

  31. K K Young IEEE Trans. Electron. Dev.36 399 (1989)

    Article  ADS  Google Scholar 

  32. T K Chiang and M L Chen Solid-State Electron.51 387 (2007)

    Article  ADS  Google Scholar 

  33. S C Lin and J B Kuo IEEE Trans. Electron. Dev.50 2559 (2003)

    Article  ADS  Google Scholar 

  34. M Gholizadeh and S E Hosseini IEEE Trans. Electron. Dev.61 1494 (2014)

    Article  ADS  Google Scholar 

  35. W Xu, H Wong and H Iwai Solid-State Electron.111 171 (2015)

    Article  ADS  Google Scholar 

  36. A S Verhulst, D Leonelli, R Rooyackers and G Groeseneken J. Appl. Phys.110 024510-1 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are also thankfully acknowledged MeitY, Government of India, for the research fellowship to Prince Kumar Singh under Visvesvaraya Ph.D. scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The intermediate junction potential \(\varphi_{i} (i = 2,3,4)\) can be obtained by using the continuity equation of the electric field between \(i\) and \(i + 1\) region:

$$\frac{{\partial \psi_{{{\text{s}},i}} (z)}}{\partial z} = \frac{{\partial \psi_{{{\text{s}},i + 1}} (z)}}{\partial z}\quad {\text{for}}\;(i = 1,2,3)$$
(45)

Solving Eq. 45, we get intermediate potential as:

$$\varphi_{2} = \frac{1}{a}\left[ {\frac{u}{v}\sinh (L_{1} \beta_{1} ) - b} \right],\quad \varphi_{3} = \frac{u}{v},\quad \varphi_{4} = \frac{1}{T}\left[ {\frac{u}{v}\sinh (L_{4} \beta_{4} ) - S} \right]$$

where

$$\begin{aligned} & a = \left[ {\cosh (L_{1} \beta_{1} )\sinh (L_{2} \beta_{2} ) + k_{21} \cosh (L_{2} \beta_{2} )\sinh (L_{1} \beta_{1} )} \right] \\ & b = \left[ \begin{aligned} & (U_{1} - \varphi_{1} )\sinh (L_{2} \beta_{2} ) - U_{1} \cosh (L_{1} \beta_{1} )\sinh (L_{2} \beta_{2} ) \\ & \quad + U_{2} k_{21} \sinh (L_{1} \beta_{1} ) - U_{2} k_{21} \sinh (L_{1} \beta_{1} )\cosh (L_{2} \beta_{2} ) \\ \end{aligned} \right] \\ & u = \left[ {R - \frac{S}{T}\sinh (L_{2} \beta_{2} ) - \frac{b}{a}\sinh (L_{3} \beta_{3} )} \right] \\ & v = P - \frac{1}{a}\left[ {\sinh (L_{1} \beta_{1} )\sinh (L_{3} \beta_{3} )} \right] - \frac{1}{T}\left[ {\sinh (L_{4} \beta_{4} )\sinh (L_{2} \beta_{2} )} \right] \\ & R = \left[ \begin{aligned} & U_{2} \cosh (L_{2} \beta_{2} )\sinh (L_{3} \beta_{3} ) + k_{32} U_{3} \cosh (L_{3} \beta_{3} )\sinh (L_{2} \beta_{2} ) \\ & \quad - U_{2} \sinh (L_{3} \beta_{3} ) - U_{3} \sinh (L_{2} \beta_{2} ) \\ \end{aligned} \right] \\ & P = \left[ {k_{32} \cosh (L_{3} \beta_{3} )\sinh (L_{2} \beta_{2} ) + \cosh (L_{2} \beta_{2} )\sinh (L_{3} \beta_{3} )} \right] \\ & T = \left[ {\cosh (L_{3} \beta_{3} )\sinh (L_{4} \beta_{4} ) + k_{43} \cosh (L_{4} \beta_{4} )\sinh (L_{3} \beta_{3} )} \right] \\ & S = \left[ \begin{aligned} & U_{3} \left( {1 - \cosh (L_{3} \beta_{3} )} \right)\sinh (L_{4} \beta_{4} ) - k_{43} U_{4} \cosh (L_{4} \beta_{4} )\sinh (L_{3} \beta_{3} ) \\ & \quad + (U_{4} - (V_{ds} + V_{b4} ))\sinh (L_{3} \beta_{3} )) \\ \end{aligned} \right] \\ & k_{21} = \frac{{\beta_{2} }}{{\beta_{1} }},\quad k_{32} = \frac{{\beta_{3} }}{{\beta_{2} }},\quad k_{43} = \frac{{\beta_{4} }}{{\beta_{3} }} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Baral, K., Kumar, S. et al. Analytical drain current model of stacked oxide SiO2/HfO2 cylindrical gate tunnel FETs with oxide interface charge. Indian J Phys 94, 841–849 (2020). https://doi.org/10.1007/s12648-019-01535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01535-2

Keywords

PACS Nos.

Navigation