Skip to main content
Log in

Procedure to Experimentally Estimate the Long-Term Strength of Polymer Materials Using the Test Results for Ring Specimens

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

A number of results obtained during the numerical finite element analysis of a procedure to test the ring specimens of polymer materials under internal pressure are discussed. The internal pressure is produced by the compression of an inset made of an incompressible material in the cavity of the specimen under test. The analysis is performed for the ring polyarylate specimens. The stress distributions in the specimen are obtained under constant load. It is shown that the stress distribution in the cross section of the specimen is not uniform for this type of loading. The effect of the elastic modulus and Poisson’s ratio of the loading inset on the tensile stresses in the specimen is studied. It is also shown that it is possible to use the maximum stress value or the stress intensity to estimate the long-term strength of polymer rings. The numerical results are used to estimate the durability of polyarylate sealing rings obtained by pressure casting at various temperature values. The experimental dependencies of time before fracture are given as functions of the maximum stress for the polymer specimens manufactured at the temperatures equal to 310 and 350° C. A new exponential dependence is proposed to approximate the experimental curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, Creep Problems in Structural Members (North-Holland Pub. Co., Amsterdam, 1969).

    MATH  Google Scholar 

  2. N. A. Makhutov, Strength and Safety. Basic and Applied Research (Nauka, Novosibirsk, 2008) fin Russian].

    Google Scholar 

  3. W. F. Busse, E. T. Lessig, D. L. Loughborough, and L. Larrick, “Fatigue of Fabrics,” J. Appl. Phvs. 13 (11), 715–723.

  4. S. N. Zhurkov, “Kinetic Concept of the Strength of Solids,” Int. J. Fract. Mech. 26 (4), 295–307 (1984).

    Article  Google Scholar 

  5. S. N. Zhurkov and B. I. Narzulavev, “The Time Dependence of the Strength of Solids,” Zhurn. Teor. Fiz. 23 (10), 1677–1680 (1953).

    Google Scholar 

  6. S. N. Zhurkov and S. A. Abasov, “The Temperature and Time Dependence of the Strength of Polvmer Fibers,” Vysokomolek. Soedinen. 3 (3), 441–449 (1961).

    Google Scholar 

  7. S. N. Zhurkov and V. E. Korsukov, “Atomic Mechanism of Polymer Fracture under Load,” Fiz. Tverdogo Tela 15 (7), 2071–2078 (1973).

    Google Scholar 

  8. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of Strength (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  9. ISO 20753:2008(E). Plastics — Test specimens, https://www.sis.se/api/document/preview/909653/. Cited March 25, 2019.

  10. R. P. Brown, “Durability of Polymers — Material Property Data,” Polym. Test. 12 (5), 423–428 (1993).

    Article  MathSciNet  Google Scholar 

  11. J. Moon, H. Bae, J. Song, and S. Choi, “Algorithmic Methods of Reference-Line Construction for Estimating Long-Term Strength of Plastic Pipe System,” Polym. Test. 56, 58–64 (2016).

    Article  Google Scholar 

  12. Yu. M. Tarnopol’skii and T. Ya. Kintsis, Static Methods of Testing Reinforced Plastics (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  13. V. V. Partsevskii, “On the Tension of an Anisotropic Ring by Rigid Half-Disks,” Mekh. Polim., No. 6, 1113–1116 (1970).

    Google Scholar 

  14. B. A. Avdeev, Technique for Determining the Mechanical Properties of Materials (Metallurgiya, Moscow, 1949) [in Russian].

    Google Scholar 

  15. R. E. Brivmanis and G. G. Portnov, “Strength of Glass-Reinforced Plastic Rings Loaded with Internal Pressure,” Polym. Mech. 4 (1), 92–94 (1968).

    Article  ADS  Google Scholar 

  16. G. B. Sinclair, “Stress Singularities in Classic Elasticity. I: Removal, Interpretation, and Analysis,” Appl. Mech. Revs. 57 (4), 251–297 (2004).

    Article  ADS  Google Scholar 

  17. G. Wypych, “PAR Polyarylate,” in Handbook of Polymers (ChemTec Publ., Toronto, 2016), pp. 280–282.

    Chapter  Google Scholar 

  18. B. D. Dean, M. Matzner, and J. M. Tibbitt, “Polyarylates,” Comprehens. Polym. Sci. 5, 317–329 (1989).

    Article  Google Scholar 

  19. Solving Contact Problems in ANSYS 6.1 (CADFEM, Moscow, 2003) [in Russian].

  20. ANSYS Textbook (Perm Gos. Tekh. Univ., Perm, 2008) [in Russian].

  21. I. I. Akimova and Yu. P. Zezin, “Fracture Resistance and Long-Term Strength of Dispersion-Hardened Composites,” Mekh. Compos. Mater. 5, 869–877 (1989).

    Google Scholar 

  22. M. S. Song, G. X. Hu, L. J. Hu, “Prediction of Long-Term Mechanical Behaviour and Lifetime of Polymeric Materials,” Polym. Test. 17 (5), 311–332 (1998).

    Article  Google Scholar 

  23. R. P. Brown, “Durability of Polymers-Material Property Data,” Polym. Test. 12 (5), 423–428 (1993).

    Article  MathSciNet  Google Scholar 

  24. A. P. Arshakuni and S. A. Shesterikov, “Long-Term Strength Prediction for Heat-Proof Metallic Materials,” Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 126–141 (1994).

    Google Scholar 

  25. A. L. Arshakuni, “Prediction of Long-Time Strength of Metals,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 126–135 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Tishin.

Additional information

Russian Text © Yu.P. Zezin, P.V. Tishin, 2019, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2019, Vol. 74, No. 2, pp. 22–28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zezin, Y.P., Tishin, P.V. Procedure to Experimentally Estimate the Long-Term Strength of Polymer Materials Using the Test Results for Ring Specimens. Moscow Univ. Mech. Bull. 74, 29–35 (2019). https://doi.org/10.3103/S0027133019020018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133019020018

Navigation