Skip to main content
Log in

The Itmurundy Accretionary Complex, Northern Balkhash Area: Geological Structure, Stratigraphy and Tectonic Origin

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The Itmurundy zone of the northern Balkhash area is a Pacific-type orogenic belt. It possesses a complex geological structure and hosts rocks of mantle, accretionary and post-orogenic associations. The volcanic and sedimentary rocks of the accretionary association belong to three suites: Itmurundy (O1-2), Kazyk (O2-3) and Tyuretai (O3-S1). The suites are separated by tectonic unconformities or faults of three orders: 1) large regional faults; 2) medium faults separating mantle and oceanic accreted rocks; 3) small faults separating packages consisting of oceanic sediments. The Itmurundy Fm. (O1-2) is the most lithologically variable consisting of oceanic basalt, pelagic chert, hemipelagic siliceous mudstone and siltstone, and trench greywacke sandstone. The packages, each consisting of chert-siliceous mudstone, are separated from each other by 2nd and 3rd order faults of probably thrust nature, i.e. they are parts of duplex structures. The presence of duplex structures and the high degree of deformation of Itmurundy Fm. rocks are typical of accretionary complexes. The associations of volcanic and sedimentary rocks under study represent a full section of oceanic plate stratigraphy (OPS): basalt (MORB, OIB)—chert (pelagic)—siliceous mudstone, siltstone and shale (hemipelagic)—trench sandstones (greywacke). The structural position and the lithology of Itmurundy rocks accord well with the model of formation of accretionary complexes at Pacific-type convergent margins, in particular, those in the western Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Geological Map of the USSR. 1 : 200 000. Pribalkhashskaya Series. Sheet L-43-XI, Compiled by V. Ya. Koshkin and V. V. Galitskii (Yuzhno-Kazakhst. Geol. Upravl. Min-va Geol. Okhr. Nedr SSSR, 1960) [in Russian].

  2. A. M. Zhilkaidarov, “On the conodont age of volcanogenic-siliceous sediments of the Dzhungar–Balkhash area,” Vestn. AN Kaz. SSR, No. 5, 84–46 (1988).

    Google Scholar 

  3. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR (Nedra, Moscow, 1990), Vol. 1 [in Russian].

    Google Scholar 

  4. I. F. Nikitin, “Ordovician siliceous and siliceous–basalt formations of Kazakhstan,” Russ. Geol. Geophys. 43, 512–527 (2002).

    Google Scholar 

  5. M. Z. Novikova, N. A. Gerasimova, and S. V. Dubinina, “Conodonts from volcanogenic–siliceous complex of the Northern Balkhash area,” Dokl. Akad. Nauk SSSR 271, 1449–1451 (1983).

    Google Scholar 

  6. E. I. Patalakha and V. A. Belyi, “Ophiolites of the Itmurundy–Kazyk Zone,” in Ophiolites (Alma-Ata, 1981), pp. 7–102 [in Russian].

    Google Scholar 

  7. I. Yu. Safonova, O. T. Obut, I. A. Savinskii, P. D. Kotler, S. V. Khromykh, S. K. Krivonogov, A. V. Gurova, A. A. Perfilova, R. I. Chernyi, N. A. Petrenko, and Sh. Maruyama, “Itmurundy accretionary complex, northern Balkhash area: Cambrian–Ordovician stage in the evolution of the Paleo-Asian ocean,” Correlation of Altaids and Uralides: Deep Structure of Lithosphere, Stratigraphy, Magmatism, Metamorphism, Geodynamics, and Metallogeny: Proceedings of 4th International Conference, Novosibirsk, Russia, 2018 (SO RAN, Novosibirsk, 2018), pp. 130–132 [in Russian].

  8. V. G. Stepanets, “Ophiolites of Kazakhstan,” Geology and Geodynamics (Lambert, 2016) [in Russian].

    Google Scholar 

  9. A. N. Filippov, I. V. Kemkin, and E. S. Panasenko, “Early Jurassic hemipelagic sediments of the Samakrka terrane (Central Sikhote Alin): structure, composition, and accumulation setting,” Tikhookean. Geol. 19 (4), 83–96 (2000).

    Google Scholar 

  10. A. N. Filippov and I. V. Kemkin, “Siliceous–clayey rocks of the Jurassic accretionary prism, Khekhtsir Range, Sikhote Alin: stratigraphy and genesis,” Russ. J. Pac. Geol. 26 (1), 42–60 (2007).

    Article  Google Scholar 

  11. A. I. Khanchuk, A. P. Nikitina, I. V. Panchenko, G. I. Burii, and I. V. Kemkin, “Paleozoic and Mesozoic guyots of Sikhote-Alin and Sakhalin,” Dokl. Akad. Nauk SSSR 307 (1), 186–190 (1889).

    Google Scholar 

  12. A. I. Khanchuk and I. V. Kemkin, “Geodynamic evolution of the Sea of Japan region in the Mesozoic,” Vestn. DVO RAN, No. 6, 94–108 (2003).

    Google Scholar 

  13. S. Boyer and D. Elliot, “Thrust Systems,” Bull. Am. Assoc. Petrol. Geol. 66, 1196–1230 (1982).

    Google Scholar 

  14. N. L. Dobretsov, N. A. Berzin, and M. M. Buslov, “Opening and Tectonic Evolution of the Paleo-Asian Ocean,” Int. Geol. Rev. 35, 335–360 (1995).

    Article  Google Scholar 

  15. W. Fujisaki, Y. Isozaki, K. Maki, S. Sakata, T. Hirata, and S. Maruyama, “Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba,” J. Asian Earth Sci. 88, 62–73 (2014).

    Article  Google Scholar 

  16. R. Hori, “Radiolarian biostratigraphy at the Triassic/Jurassic period boundary in bedded cherts from the Inuyama Area, Central Japan,” J. Geosci. 35, 53–65 (1992).

    Google Scholar 

  17. Y. Isozaki, S. Maruyama, and F. Fukuoka, “Accreted oceanic materials in Japan,” Tectonophysics 181, 179–205 (1990).

    Article  Google Scholar 

  18. I. V. Kemkin, A. I. Khanchuk, and R. A. Kemkina, “Accretionary prisms of the Sikhote-Alin Orogenic Belt: composition, structure and significance for reconstruction of the geodynamic evolution of the Eastern Asian Margin,” J. Geodynam. 102, 202–230 (2016).

    Article  Google Scholar 

  19. A. I. Khanchuk, “Pre-Neogene tectonics of the Sea-Of-Japan Region: a view from the Russian side,” Earth Sci 55, 275–291 (2001).

    Google Scholar 

  20. A. I. Khanchuk, I. V. Kemkin, and N. N. Kruk, “The Sikhote-Alin Orogenic Belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data,” J. Asian Earth Sci. 120, 117–138 (2016).

    Article  Google Scholar 

  21. S. Kojima, I. V. Kemkin, M. Kametaka, and A. Ando, “A correlation of accretionary complexes of southern Sikhote-Alin of Russia and the Inner Zone of Southern Japan,” Geosci. J 4, 175–185 (2000).

    Article  Google Scholar 

  22. V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, A. B. Kotov, I. K. Kozakov, E. B. Salnikova, and A. M. Larin, “Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence,” J. Asian Earth Sci. 23, 605–627 (2004).

    Article  Google Scholar 

  23. T. Kusky, B. Windley, I. Safonova, K. Wakita, J. Wakabayashi, A. Pola, and M. Santosh, “Recognition of ocean plate stratigraphy in accretionary orogens through earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion,” Gondwana Res. 24, 501–547 (2013).

    Article  Google Scholar 

  24. S. Maruyama, T. Kawai, and B. Windley, “Ocean Plate Stratigraphy and Its Imbrication in An Accretionary Orogen: the Mona Complex, Anglesey-Lleyn, Wales,” Geol. Soc. Spec. Publ. London, 338, 55–75 (2010).

    Article  Google Scholar 

  25. K. R. McClay, Glossary of Thrust Tectonic Terms (Univ. London, Egham, Surrey, 1992).

    Book  Google Scholar 

  26. I. Safonova, “Juvenile versus recycled crust in the Central Asian Orogenic Belt: implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs,” Gondwana Res. 47, 6–27 (2017).

    Article  Google Scholar 

  27. I. Safonova and S. Maruyama, “Asia: a frontier for a future supercontinent Amasia,” Intern. Geol. Rev 56, 1051–1071 (2014).

    Article  Google Scholar 

  28. I. Safonova and M. Santosh, “Accretionary complexes in the Asia-Pacific Region: tracing archives of ocean plate stratigraphy and tracking mantle plumes,” Gondwana Res. 25, 126–158 (2014).

    Article  Google Scholar 

  29. I. Safonova, S. Kojima, S. Nakae, R. Romer, R. Seltmann, H. Sa No, and T. Onoue “Oceanic island basalts in accretionary complexes of SW Japan: tectonic and petrogenetic implications,” J. Asian Earth Sci. 113, 508–523 (2015).

    Article  Google Scholar 

  30. I. Safonova, G. Biske, R. L. Romer, R. Seltmann, V. Simonov, and S. Maruyama, “Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan,” Gondwana Res. 30, 236–256 (2016).

    Article  Google Scholar 

  31. I. Safonova, S. Maruyama, S. Kojima, T. Komiya, S. Krivonogov, and K. Koshida, “Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology, and geochemistry,” Gondwana Res. 33, 92–114 (2016).

    Article  Google Scholar 

  32. K. Wakita, “Mappable features of melanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes, Southwest Japan,” Tectonophysics 568–569, 74–85 (2012).

  33. B. Windley, D. Alexeiev, W. Xiao, A. Kroner, and G. Badarch, “Tectonic models for accretion of the Central Asian Orogenic Belt,” J. Geol. Soc. 164, 31–47 (2007).                  Recommended for publishing by A.I. Khanchuk

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express their cordial thanks to A.I. Khanchuk, Academician of RAS, and P.V. Ermolov, Academician of NAN of Kazakhstan, interesting and fruitful discussion of the results of field works in northern Balkhash and while preparing the manuscript. We also also grateful to RAS corr.-member A.N. Didenko for his comments and suggestions which definitely helped us to improve the paper.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation: the state assignments of IGM SB RAS and NSU (no. ZI-14-17/П220, ZI-13-17/П220, ZI-12-17/П22) and project no. 14.Y26.31.0018 “A multidisciplinary study of Pacific-type orogenic belts and development of a holistic model linking evolution of oceans, their active margins and mantle magmatism”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Safonova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Recommended for publishing by A.I. Khanchuk

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonova, I.Y., Perfilova, A.A., Obut, O.T. et al. The Itmurundy Accretionary Complex, Northern Balkhash Area: Geological Structure, Stratigraphy and Tectonic Origin. Russ. J. of Pac. Geol. 13, 283–296 (2019). https://doi.org/10.1134/S1819714019030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714019030072

Keywords:

Navigation