Skip to main content
Log in

Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Salinity is an important abiotic environmental stress factor threatening agricultural productivity throughout the world. The detrimental effects of salinity stress are observed at cellular, organ and whole plant level at osmotic phase (early/short-term response) and ionic phase (late/long-term response). High salinity exerts its negative impact on major plant processes such as disrupting the osmotic and ionic equilibrium, protein synthesis, photosynthesis, energy, and lipid metabolism. To adapt and tolerate salt stress, plants have evolved physiological and biochemical mechanisms orchestrated by multiple biochemical pathways of ion homeostasis, osmolytes synthesis, ROS scavenging, and hormonal balance. At the molecular level, such adaptation involves activation of cascade(s) of gene modulations and synthesis of defense metabolites. In recent years, several candidate genes have been identified and employed to facilitate genetic engineering efforts to improve salt tolerance in crop plants. However, there is a further need of improvement for successful release of salt tolerant cultivars at the field level. In this article we present the physiological, biochemical and molecular signatures of plant responses to salinity, and outline their use in genetic engineering to improve salt stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdula SE, Lee HJ, Ryu H, Kang KK, Nou I, Sorrells ME, Cho YG (2016) over expression of BrCIPK1 Gene enhances abiotic stress tolerance by increasing proline biosynthesis in Rice. Plant Mol Biol Rep (2016) 34: 501. doi:10.1007/s11105-015-0939-x

    Article  CAS  Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant physiology 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123

    Article  CAS  PubMed  Google Scholar 

  • Akram MS and Ashraf M (2011) Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). J. Plant Nutr 34: 1041–1057

    Article  CAS  Google Scholar 

  • Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornick A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K(+ ) specificity in the presence of NaCl. Plant Physiol. 158:1463–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 19(3):307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J. Exp. Bot. 60:3491–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardie S, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep. 29: 865–874

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199: 361–376

    Article  Google Scholar 

  • Ashraf M and Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M and Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ and Expt Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M and Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3–16

    Article  CAS  Google Scholar 

  • Ashraf M and Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ − ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotech. J. 10:453–464

    Article  CAS  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal 62: 250–264

    Article  CAS  PubMed  Google Scholar 

  • Bao AK, Wang SM, Wu GO, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+ − PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 76: 232–240

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotech 26: 62–70

    Article  CAS  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009)Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. Journal of Plant Growth Regulation, 28(2): 187–192

    Article  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y-R, Chen S-Y, Zhang J-S. (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signaling & Behavior. 3:761–763.

    Article  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants. J Lipid Res 53:215–226

  • Chaudhary A, Singh A, Sengar RS (2015) Antioxidant activity in rice under salinity stress: an overview. Plant Archives 15(1):7–13

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Bot 103: 551–560

    Article  CAS  Google Scholar 

  • Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research 57: 49–104

    Article  CAS  Google Scholar 

  • Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA ofPopulus euphratica; a hybrid in response to increasing soil NaCl. Trees—Structure and Function. 15(3) 186–194

    Article  CAS  Google Scholar 

  • Chen M-X, Lung S-C, Du Z-Y, Chye M-L (2014) Engineering plants to tolerate abiotic stresses. Biocatalysis and agricultural biotechnology 3:81–87

    Article  Google Scholar 

  • Chen Y, Zong J, Tan Z, Li L, Hu B, Chen C, Chen J, Liu J (2015a) Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening. Plant Physiol. Biochem. 89:44–52

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Sung SJ, Kim B, Gi, Pandey GK, Cho JS, Kim KN, et.al (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells 29:159–165

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci. 45:437–448

    Article  CAS  Google Scholar 

  • Chu X, Wang C, Chen X, Lu W, Li H, Wang X, et al. (2015) The cotton WRKY Gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana Benthamiana. PLoS ONE 10(11): e0143022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126: 480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosentino C, Di Silvestre D, Fischer-Schliebs E, Homann U, De Palma A, Comunian C, Mauri PL, Thiel G (2013) Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM. Biochem J. 450(2):407–415

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR and Quarrie SA (2002) Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity, Functional Plant Biology. 29(1): 111–115

    Article  CAS  Google Scholar 

  • Daniells IG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust J Exp Agric. 41:211–217

    Article  Google Scholar 

  • Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol. 50: 986–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das AB (2013) Bioprospecting and genetic engineering of Mangrove genes to enhance salinity tolerance in crop plants, SM Jain and S Dutta Gupta (eds.), Biotechnology of Neglected and Underutilized Crops, Springer 385–456

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett. 580: 3980–3988

    Article  CAS  PubMed  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203–206

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros JV, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56(1):87–94

  • De Oliveira BDO, Nara LMA, Eneas G-F (2013) Comparison between the water and salt stress effects on plant growth and development. Responses of organisms to water stress 4: 67–94

    Google Scholar 

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase Gene from wheat, confers salt stress tolerance in transgenic tobacco. Plos One 8(7): e69881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diedhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biology 8–49

  • Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol. 161:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellouzi H, Hamed KB, Hernandez I, Cela J, Muller M, Magne C, et al. (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240:1299–1317

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T., Shibahara T., Inanaga S., Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Ruiz A, Belles JM, Serrano R, Culianez-Macla V (1999) Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J. 20:529–539

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ and Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist. 179: 945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ and Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manage 78:15–24

    Article  Google Scholar 

  • Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+ − PPase gene from Thellungiella Halophila and its heterologous expression to improve tobacco salt tolerance. J. Exp. Bot. 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) Osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Molecular Biology Reports 38: 237–242

    Article  CAS  PubMed  Google Scholar 

  • Gill SS and Tuteja (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiol and biochem. 48: 909–930

    Article  CAS  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior 6:(11)1746–1751

    Article  CAS  Google Scholar 

  • Gorham J, Bridges J, Dubcovsky J, Dvorak J, Hollington PA, Luo MC, Khan JA (1997) Genetic analysis and physiology of a trait for enhanced K+/Na + discrimination in wheat. New Phytol 137:109–116

    Article  CAS  Google Scholar 

  • Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+ /H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol. Biol. Rep. 38:1889–1899

    Article  CAS  PubMed  Google Scholar 

  • Guan Q, Wang Z, Wang X, Takano T, Liu SA (2015) Peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J. Plant Physiol 175:183–191

    Article  CAS  Google Scholar 

  • Guo YS, Wan-Ke Z, Dong-Qing Y, Bao-Xing D, Jin-Song Z, Shou-Yi C (2002) Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. Acta Bota. Sinica 44: 956–962

    Google Scholar 

  • Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu J-K (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+ − pyrophos-phatase gene, SsVP, from the halophyte Suaeda Salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol. 60: 41–50

    Article  CAS  PubMed  Google Scholar 

  • Gupta B and Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. of Genomics 1–19

  • He C, Yang A, Zhang W, Gao Q, Zhang J (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell, Tissue and Organ Culture 101:65–78

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O·-2 /H2O2 production in the apoplast of pea leaves. Its relationwith salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817–831

    CAS  Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany 124: 39–63

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1 pyrroline-5-carboxylase synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122: 1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J. Exp. Bot 58:3273–3283

    Article  CAS  PubMed  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+ − pyrophosphatase and a B subunit of H+ − ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss. Org. Cult. 108:63–71

    Article  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes and Development 23:1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas R, Olías R, Eljakaoui Z, Gálvez F J, Li J, De Morales PA, Belver A, Rodriguez-Rosales MP (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35, 1467–1482. doi:10.1111/j.1365-3040.2012.02504.x

    Article  CAS  PubMed  Google Scholar 

  • Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Frontiers in Plant Sci. 6:375

    Article  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011).Majorgenesfor Na+ exclusion. Nax1 and Nax2 (wheat HKT1;4 and HKT1;5),decrease Na+ accumulation in bread wheat leave sunder saline and waterlogged conditions. J. Exp.Bot. 62: 2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6- phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho WS, Park YT, et al. (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant cell, Tissue and Organ Culture 85:151–160

    Article  CAS  Google Scholar 

  • Jha A, Joshi M, Yadav N, Agarwal P, Jha B (2011a) Cloning and characterization of the Salicornia Brachiata Na+ /H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Bio. Rep. 38:1965–1973

    Article  CAS  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011b) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia Brachiata in tobacco for salt tolerance. Mol. Bio. Rep. 38: 4823–4832

    Article  CAS  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8: e71136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal Experimental Botany 53: 2201–2206

    Article  CAS  Google Scholar 

  • Jiang Y and Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signaling & Behavior 5(7):792–795

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defiance. J. of Genetics 85: 1–14

    Article  Google Scholar 

  • Johnson R. R., Wagner R. L., Verhey S. D., Walker-Simmons M. K. (2002)The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology, vol. 130(2) 837–846

    Article  Google Scholar 

  • Joshi R, Ramanarao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol. Biochem. 65: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology 146: 623–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science 20(4):1360–1385

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants, Biochim. Biophys. Acta, 1819(2): 137–148

    Article  CAS  PubMed  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23(2):267–278

    Article  CAS  PubMed  Google Scholar 

  • Kim JY , Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol. 51(6):1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Abe N, Yoshida KT, Liu S, Takano T (2012) Molecular cloning and characterization of plasma membrane and vacuolar type Na+ /K+ antiporters of an alkaline salt tolerant monocot Puccinellia tenuiflora. J. Plant Res. 125:587–594

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, et al.(2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell and Environment 34:1291–1303

    Article  CAS  PubMed  Google Scholar 

  • Kumar V and Jain M (2015). The CRISPR-Cas system for plant genome editing: advances and opportunities. J. Exp. Bot. 66: 47–57

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Das P, Parida AK and Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 6:537. doi: 10.3389/fpls.2015.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurusu T, Kuchitsu K and Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front. Plant Sci.6:427

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan T, Duan Y, Wang B, Zhou Y, Wu W (2011) Molecular cloning and functional characterization of a Na+ /H+ antiporter gene from halophyte Spartina anglica. Turk. J. 35: 535–543

    CAS  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. The Plant Journal 32:139–149

    Article  CAS  PubMed  Google Scholar 

  • Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B et al. (2010). The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J. 61:495–506

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta. 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants.Cell Res. 18(10):1047–1060.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of twoHKT1homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol. 127: 283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008a) Transgenic salt tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant, Cell & Environment 31:1325–1334

    Article  CAS  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a vacuolar H+ − pyrophosphatase gene from the halophyte Suaeda Corniculata whose heterologous overexpression improves salt, saline–alkali and drought tolerance in Arabidopsis. J. Integ. Plant Biol. 53:731–742

    CAS  Google Scholar 

  • Liu L, Fan XD, Wang FW, Wang N, Dong YY, Liu XM, Yang J, Wang YF, Li HY (2013) Coexpression of ScNHX1 and ScVP in transgenic hybrids improves salt and saline–alkali tolerance in alfalfa (Medicago sativa L.). J. Plant Growth Reg. 32:1–8

    Article  CAS  Google Scholar 

  • Liu J, Zhang S, Dong L, Chu J (2014) Incorporation of Na+ /H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.). Indian J. Biochem. Biophy. 51:58–65

    CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010) Biochemical, physiological andgrowth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult. 102:17–25

    Article  Google Scholar 

  • Lokhande VH, Mulye K, Patkar R, Nikam TD, Suprasanna P (2013) Biochemical and physiological adaptations of the halophyte Sesuvium portulacastrum (L.) L.(Aizoaceae) to salinity. Arch. Agric. Soil Sci. 59:1373–1391

    CAS  Google Scholar 

  • Lu ZQ, Liu D, Liu SK (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis, Plant Cell Rep. 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Luo MB and Liu F (2011) Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva Prolifera. J. of Expt Marine Bio and Ecology. 409:223–228

    Article  CAS  Google Scholar 

  • Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol. 166:385–394

    Article  CAS  PubMed  Google Scholar 

  • Lv SL, Zhang K, Gao Q, Lian L, Song Y, Zhang, J (2008) Overexpression of an H+ − PPase gene from Thellungiella Halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, et al. (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J. Proteom. 75:1529–1546

    Article  CAS  Google Scholar 

  • Macovei A, Gill SS, Tuteja N (2012) MicroRNAs as promising tools for improving stress tolerance in rice. Plant Signaling & Behavior 7:10, 1296–1301

    Article  CAS  Google Scholar 

  • Mahajan S and Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys. 471(2):146–158

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Mantri N, Patade V, Suprasanna P, Ford R, Pang EP (2012) Abiotic Stress Responses in Plants: Present and Future, Ahmad and M.N.V. Prasad (eds.). Metabolism, Productivity and Sustainability 1–19

    Google Scholar 

  • Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R (2011) Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics. 11:445–465

    Article  CAS  PubMed  Google Scholar 

  • Maris PA and Blumwald E (2007) Na+ transport in plants. FEBS letters 581: 2247–2254

    Article  CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanismsofabioticstresstolerancethattranslatetocropyieldstability. Nat. Rev.Genet. 16,237–251

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, et al. (2003) NDP kinase 2 interacts with two oxidative stress activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America 100:358–363

    Article  CAS  PubMed  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation, Flora 224: 96–105

    Article  Google Scholar 

  • Munns (2005) Genes and salt tolerance: bringing them together. New Phytologist. 167: 645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R and Tester M (2008) Mechanisms of salinity tolerance. Annu. Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan S, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, kat E. Plant Biotechnology Reports 1: 49–55

    Article  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol Biophys. 444:139–158

    Google Scholar 

  • Nouri MZ, Moumeni A, Komatsu S (2015) Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int. J. Mol. Sci. 20: 392–320

    Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology 138(1):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    Article  CAS  PubMed  Google Scholar 

  • Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol. 151: 210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+ /H+ antiporter gene from Atriplex Gmelini confers salt tolerance to rice. FEBS Letters 532: 279–282

    Article  CAS  PubMed  Google Scholar 

  • Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol. Plant 138, 10–21

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Envir. Safety 60:324–349

    Article  CAS  Google Scholar 

  • Park H-Y, Seok H-Y, Park B-K, Kim S-H, Goh C-H, Lee B-H, Lee C-H, Moon Y-H (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem. Biophys. Res. Comm. 375:80–85

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Apse MP and E Blumwald (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Advances in Botanical Research 57: 405–443

    Article  CAS  Google Scholar 

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, et al. (2014) Saltinduced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. 10:e1004664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plett D, Safwat G, Gilliham M, Møller IS, Roy S, Shirley N, et al (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5:e12571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+ /H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep. 26: 1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 104:202–208

    Article  CAS  PubMed  Google Scholar 

  • Rahdari P and Seyed MH (2011): Salinity stress: a review. Tech J Engin & App Sci 1 (3): 63–66

    Google Scholar 

  • Rai AN, Sreenath T, Rao, KV, Vinay Kumar, Suprasanna P (2016) Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis. Plant Mol. Biol. 90(4): 375–387

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna A and Gokare AR (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior 6: (11) 1720–1731

    Article  CAS  Google Scholar 

  • Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz G, Saeed N (2014) Cloning and characterization of Na+ /H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol. Biol. Rep. 41:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants, Current Opinion in Biotechnology 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rus AM, Estan MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M, Moreno V, Bolarin MC (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+ /Na+ selectivity under salt stress. Plant Cell Environ. 24:875–880

    Article  CAS  Google Scholar 

  • Ryu H, Cho Y-G (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

  • Sablok G, Srivastva AK, Suprasanna P, Baev V and Ralph PJ (2015) isomiRs: increasing evidences of isomiRs complexity in plant stress functional biology. Front. Plant Sci. 6:949

    Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany 103: 609–623

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plant. Plant Cell Environ 25:163–171

  • Schaeffer HJ, Forstheoefel NR, Cushman JC (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Molecular Biology 28:205–218

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR et al. (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Ishida J, Narusaka M, et al. (2002) Monitoring the expression pattern of ca. 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics 2, 282–291

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Bot. 112:1209–1221

    Article  Google Scholar 

  • Shekhawat UKS and Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS ONE. 8(10): e75506.

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY. (2003). Characterization of a DRE-binding transcription factor from a halophyte. Atriplex hortensis. Theoretical and Applied Genetics 107, 155–161

    Article  CAS  PubMed  Google Scholar 

  • Shi H and Zhu J-K (2002) Regulation of expression of the vacuolar Na+ /H+ antiporter gene AtNHX1 by salt stress and ABA. Plant. Mol. Biol. 50: 543–550

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim CS, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Lee B-h, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21: 81–85

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Frontiers in Plant Science.7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva P, Geros H (2009) Regulation by salt of vacuolar H+ -ATPase and H+ -pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726

  • Singh N, Mishra A, Jha B (2014) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547: 119–125

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savour A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann of Bot 1–15

  • Sridha S and Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses inArabidopsis. Plant J. 46:124–133

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK and Suprasanna P (2015) Redox regulated mechanisms: Implications for enhancing plant stress tolerance and crop yield. In: Giridhar Kumar Pandey (Eds.), Elucidation of Abiotic Stress Signaling in Plants. Springer, Netherland 191–205

    Chapter  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

  • Sunkar R and Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis, Plant Cell. 16(8):2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P, Teixeira da Silva JA and Bapat VA (2005) Plant abiotic stress, sugars and transgenics: a perspective. In: Floriculture, ornamental and plant biotechnology: advances and topical issues; Teixeira da Silva JA (Ed). Global Science Publishers, London, UK. 86–93

    Google Scholar 

  • Suprasanna P, Rai AN, HimaKumari P, Kumar SA and Kavi Kishor PB (2014) Modulation of proline: implications in plant stress tolerance and development. Plant Adaptation to Environmental Change (eds N.A. Anjum, S.S. Gill and R. Gill) CABI Publishers, UK 68–93

    Google Scholar 

  • Suprasanna P, Nikalje GC, Rai AN (2016) Osmolyte accumulation and implications in plant abiotic stress tolerance. In Osmolytes and plants acclimation to changing environment: emerging omics technologies; Iqbal N, Nazar R, Khan NA (Ed). Springer, India. 1–12

    Chapter  Google Scholar 

  • Szabados L and Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Nishio T, Ichizen N, Takano T (2007) Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants. Biotech. Lett. 29:501–506

    Article  CAS  Google Scholar 

  • Tao H, Yi H, Hu L, Fu J (2013) Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. J. AMER. SOC. HORT. SCI. 138(5):350–357

    Google Scholar 

  • Tao J-J, Chen H-W, Ma B, Zhang W-K, Chen S-Y, Zhang J-S (2015b) The role of ethylene in plants under salinity stress. Frontiers in Plant Science 6 (1059): 1–12

    Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell. 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia Brachiata. Plant Cell Physiol 55: 201–217

    Article  CAS  PubMed  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA(2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789

    Article  CAS  PubMed  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal, 58: 778–790

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta. 239(2):255–266

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. AJCS. 6(9):1337–1348

    Google Scholar 

  • Tuteja N (2007a) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–138

  • Tuteja N (2007b) Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior 2(3) 135–138

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S 97(21):11632–11637

    Article  CAS  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae Plant Physiol. 122:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderauwera S, Vandenbroucke K, Inze A, van de Cotte B, Muhlenbock P, De Rycke R., et al. (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109:20113–20118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr. Opin. Plant Biol. 7: 329–336

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 167: 671–677

    Article  CAS  Google Scholar 

  • Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, et al.(2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology 65: 733–746

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. - plant Mol. Biol. 67: 589–602

    CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol. Biol. Rep. 37:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+ /H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4122–4813

    Google Scholar 

  • Wang Rk, Ling LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology 79(1):123–135.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang H Shao H, Xiaoli T (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016; 7: 67.

    Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The crop j. 4: 162–176.

    Article  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+ /H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella Halophila. Plant Mol. Biol. Rep. 27:1–12

    Article  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye HY, Xiong LZH (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148:1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, et al. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J. 66: 280–292

    Article  CAS  PubMed  Google Scholar 

  • Xiong L and Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell 5: 745–759

    Article  CAS  Google Scholar 

  • Xiong L and Zhu J-K (2003) Regulation of abscisic acid biosynthe sis. Plant Physiol. 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. The Plant Cell S165–S183

  • Xu D-Q, Huang J, Guo S-Q, Yang X, Bao Y-M, Tang H-J, Zhang H-S (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters 582: 1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zh B, Jin XF, et al. (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Xu GY, Pedro SCFR, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1): 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+ /H+ antiporter gene with improved grain yield in saline soils in the field and a reduced level of leaf Na+ . Plant Sci. 167:849–859

    Article  CAS  Google Scholar 

  • Yadav N, Shukla P, Jha A, Agarwal P, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia Brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 12:1–18

    Article  CAS  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2 + − and pHdependent manner. Proc Natl Acad Sci USA. 102:16107–16112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 63(7): 2541–2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Tang R-J, Jiang C-M, Li B, Kang T, Liu H, Zhao N, Ma X-J, Yang L, Chen SL, Zhang HX (2015) Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotech. J. 1–12

  • Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+ − pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol. Biol. Rep. 39:7989–7996

    Article  CAS  PubMed  Google Scholar 

  • Ying S, Zhang DF, Li HY, Liu YH, Shi YS, Song YC, et al. (2011) Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Reports 30(9):1683–1699

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Ahmad A, Ganie AH, Iqbal M (2016) Salt stress-induced modulations in the shoot proteome of Brassica juncea genotypes. Environ Sci Pollut Res 23(3):2391–2401

    Article  CAS  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F et al. (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188:762–773

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 1–13

  • Zhang HX and Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19: 765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang Y, Ismail AM (2006a) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97:111–119

    Article  Google Scholar 

  • Zhang Y, Yang J, Lu S, Cai J, Guo Z (2008) Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul 27:151–158

    Article  CAS  Google Scholar 

  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Molecular Breeding 23: 289–298

    Article  CAS  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLOS ONE

  • Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, et al. (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Molecular Biology. 77(1–2):17–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu K, Zheng Y, Wang Y. Wang J. Liao H (2013) Disruption of AtWNK8 enhances tolerance of Arabidopsis to salt and osmotic stresses via modulating proline content and activities of catalase and peroxidase. Int. J. Mol. Sci., 14: 7032–7047

  • Zhao XC and Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylenereceptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+ /H+ antiporter gene from Suaeda Salsa. J. Plant Res. 119:95–104

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G. (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol. 164: 1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Zhonghua C, Tracey AC, Meixue Z, Amanda T, Naidu BP, Sergey S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of experimental botany 58: 4245–4255

    Article  CAS  Google Scholar 

  • Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, et al. (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett. 580:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 Gene alters plant development and enhances salt and drought tolerance in transgenic creeping Bentgrass. Plant Physiology. 161(3): 1375–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci. 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Review salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Review regulation of ion homeostasis under salt stress.Curr Opin Plant Biol. 6(5):441–445

    Article  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, et al (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Muchate NS is thankful to Department of Science and technology, Government of India for Inspire Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukaram D. Nikam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muchate, N.S., Nikalje, G.C., Rajurkar, N.S. et al. Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance. Bot. Rev. 82, 371–406 (2016). https://doi.org/10.1007/s12229-016-9173-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-016-9173-y

Keywords

Navigation