Skip to main content
Log in

Chemical structures of oligosaccharides in milks of the American black bear (Ursus americanus americanus) and cheetah (Acinonyx jubatus)

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The milk oligosaccharides were studied for two species of the Carnivora: the American black bear (Ursus americanus, family Ursidae, Caniformia), and the cheetah, (Acinonyx jubatus, family Felidae, Feliformia). Lactose was the most dominant saccharide in cheetah milk, while this was a minor saccharide and milk oligosaccharides predominated over lactose in American black bear milk. The structures of 8 neutral saccharides from American black bear milk were found to be Gal(β1–4)Glc (lactose), Fuc(α1–2)Gal(β1–4)Glc (2′-fucosyllactose), Gal(α1–3)Gal(β1–4)Glc (isoglobotriose), Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)Glc (B-tetrasaccharide), Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)[Fuc(α1–3)]Glc (B-pentasaccharide), Fuc(α1–2)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–3)Gal(β1–4)Glc (difucosyl lacto-N-neotetraose), Gal(α1–3)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–3)Gal(β1–4)Glc (monogalactosyl monofucosyl lacto-N-neotetraose) and Gal(α1–3)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (Galili pentasaccharide). Structures of 5 acidic saccharides were also identified in black bear milk: Neu5Ac(α2–3)Gal(β1–4)Glc (3′-sialyllactose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3)[Fuc(α1–2)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (monosialyl monofucosyl lacto-N-neohexaose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3)[Gal(α1–3)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (monosialyl monogalactosyl lacto-N-neohexaose), Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3){Gal(α1–3)Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–6)}Gal(β1–4)Glc (monosialyl monogalactosyl monofucosyl lacto-N-neohexaose), and Neu5Ac(α2–6)Gal(β1–4)GlcNAc(β1–3){Gal(α1–3)[Fuc(α1–2)]Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1–6)}Gal(β1–4)Glc (monosialyl monogalactosyl difucosyl lacto-N-neohexaose). A notable feature of some of these milk oligosaccharides is the presence of B-antigen (Gal(α1–3)[Fuc(α1–2)]Gal), α-Gal epitope (Gal(α1–3)Gal(β1–4)Glc(NAc)) and Lewis x (Gal(β1–4)[Fuc(α1–3)]GlcNAc) structures within oligosaccharides. By comparison to American black bear milk, cheetah milk had a much smaller array of oligosaccharides. Two cheetah milks contained Gal(α1–3)Gal(β1–4)Glc (isoglobotriose), while another cheetah milk did not, but contained Gal(β1–6)Gal(β1–4)Glc (6′-galactosyllactose) and Gal(β1–3)Gal(β1–4)Glc (3′-galactosyllactose). Two cheetah milks contained Gal(β1–4)GlcNAc(β1–3)[Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (lacto-N-neohexaose), and one cheetah milk contained Gal(β1–4)Glc-3’-O-sulfate. Neu5Ac(α2–8)Neu5Ac(α2–3)Gal(β1–4)Glc (disialyllactose) was the only sialyl oligosaccharide identified in cheetah milk. The heterogeneity of milk oligosaccharides was found between both species with respect of the presence/absence of B-antigen and Lewis x. The variety of milk oligosaccharides was much greater in the American black bear than in the cheetah. The ratio of milk oligosaccharides-to-lactose was lower in cheetah (1:1–1:2) than American black bear (21:1) which is likely a reflection of the requirement for a dietary supply of N-acetyl neuraminic acid (sialic acid), in altricial ursids compared to more precocial felids, given the role of these oligosaccharides in the synthesis of brain gangliosides and the polysialic chains on neural cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jenness, R.E., Regehr, E.A., Sloan, R.E.: Comparative studies of milks. II. Dialyzable carbohydrates. Comp. Biochem. Physiol. 13, 339–352 (1964)

    Article  CAS  Google Scholar 

  2. Shennan, D.B., Peaker, M.: Transport of milk constituents by the mammary gland. Physiol. Rev. 80, 925–951 (2000)

    Article  CAS  Google Scholar 

  3. Urashima, T., Messer, M., Oftedal, O.T.: Comparative biochemistry and evolution of milk oligosaccharides of monotremes, marsupials, and eutherians. In: Pontarotti, P. (ed.) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life, Pp. 3–33. Springer, Swiyzerland (2014)

    Google Scholar 

  4. Urashima, T., Kusaka, Y., Nakamura, T., Saito, T., Maeda, N., Messer, M.: Chemical characterization of milk oligosaccharides of the brown bear, Ursus arctos yesoensis. Biochim. Biophys. Acta. 1334, 247–255 (1997)

    Article  CAS  Google Scholar 

  5. Urashima, T., Sumiyoshi, W., Nakamura, T., Arai, I., Saito, T., Komatsu, T., Tsubota, T.: Chemical characterization of milk oligosaccharides of the Japanese black bear, Ursus thibetanus japonicus. Biochim. Biophys. Acta. 1472, 290–306 (1999)

    Article  CAS  Google Scholar 

  6. Urashima, T., Yamashita, T., Nakamura, T., Arai, I., Saito, T., Derocher, A.E.: O. Wiig, O.: chemical characterization of milk oligosaccharides of the polar bear, Ursus maritimus. Biochim. Biophys Acta. 1475, 395–408 (2000)

    Article  CAS  Google Scholar 

  7. Urashima, T., Nagata, H., Nakamura, T., Arai, I., Saito, T., Imazu, K., Hayashi, T., Derocher, A.E., Wiig, O.: Differences in oligosaccharides pattern of a sample of polar bear colostrum and mid-lactation milk. Comp. Biochem. Physiol. B136, 887–896 (2003)

    Article  Google Scholar 

  8. Urashima, T., Nakamura, T., Teramoto, K., Arai, I., Saito, T., Komatsu, T., Tsubota, T.: Chemical characterization of sialyl oligosaccharides in milk of the Japanese black bear, Ursus thibetanus japonicus. Comp. Biochem. Physiol. B139, 587–595 (2004)

    Article  Google Scholar 

  9. Urashima, T., Yamaguchi, E., Ohshima, T., Fukuda, K., Saito, T.: Chemical structures of oligosaccharides in milk of the raccoon (Procyon lotor). Glycoconj. J. 35, 275–286 (2018)

    Article  CAS  Google Scholar 

  10. Urashima, T., Arita, M., Yoshida, M., Nakamura, T., Arai, I., Saito, T., Arnould, J.P.Y., Kovacs, K.M., Lydersen, C.: Chemical characterization of the oligosaccharides in hooded seal. (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp. Biochem. Physiol. B128, 307–323 (2001)

    Article  Google Scholar 

  11. Urashima, T., Nakamura, T., Yamaguchi, K., Munakata, J., Arai, I., Saito, T., Lydersen, C., Kovacs, K.M.: Chemical characterization of the oligosaccharides in milk of high Arctic harbour seal (Phoca vitulina vitulina). Comp. Biochem. Physiol. A135, 549–563 (2003)

    Article  Google Scholar 

  12. Urashima, T., Nakamura, T., Nakagawa, D., Noda, M., Arai, I., Saito, T., Lydersen, C., Kovacs, K.M.: Characterization of oligosaccharides in a milk of bearded seal (Erignathus barbatus). Comp. Biochem. Physiol. B138, 1–18 (2004)

    Article  Google Scholar 

  13. Kinoshita, M., Ohta, H., Higaki, K., Kojima, Y., Urashima, T., Nakajima, K., Suzuki, M., Kovacs, K.M., Lydersen, C., Hayakawa, T., Kakehi, K.: Structural characterization of multi-branched oligosaccharides from seal milk by combination of off-line HPLC-MALDI-TOF MS and sequential exoglycosidase digestion. Anal. Biochem. 388, 242–253 (2009)

    Article  CAS  Google Scholar 

  14. Urashima, T., Yamamoto, M., Nakamura, T., Arai, I., Saito, T., Namiki, M., Yamaoka, K., Kawahara, K.: Chemical characterisation of the oligosaccharides in a sample of milk of a white-nosed coati, Nasua narica (Procyonidae: Carnivora). Comp. Biochem. Physiol. A123, 187–193 (1999)

    Article  Google Scholar 

  15. Taufik, E., Sekii, N., Senda, A., Fukuda, K., Saito, T., Eisert, R., Oftedal, O.T., Urashima, T.: Neutral and acidic milk oligosaccharides of the striped skunk (Mephitidae: Mephitis mephitis). Anim. Sci. J. 84, 569–578 (2013)

    Article  CAS  Google Scholar 

  16. Urashima, T., Nakamura, T., Ikeda, A., Asakuma, S., Arai, I., Saito, T., Oftedal, O.T.: Characterization of oligosaccharides in milk of a mink, Mustela vison. Comp. Biochem. Physiol. A142, 461–471 (2005)

    Article  Google Scholar 

  17. Bubb, W.A., Urashima, T., Kohso, K., Nakamura, T., Arai, I., Saito, T.: Occurrence of an unusual lactose sulfate in dog milk. Carbohydr. Res. 318, 123–128 (1999)

    Article  CAS  Google Scholar 

  18. Rostami, M.S., Benet, T., Spears, J., Reynolds, A., Satyaraj, E., Sprenger, N., Austin, S.: Milk oligosaccharides over time of lactation from different dog breeds. PLoS One e99824 (2014)

  19. Uemura, Y., Takahashi, S., Senda, A., Fukuda, K., Saito, T., Oftedal, O.T., Urashima, T.: Chemical characterization of milk oligosaccharides of a spotted hyena (Crocuta crocuta). Comp. Biochem. Physiol. A152, 158–161 (2009)

    Article  Google Scholar 

  20. Senda, A., Hatakeyama, E., Kobayashi, R., Fukuda, K., Uemura, Y., Saito, T., Packer, C., Oftedal, O.T., Urashima, T.: Chemical characterization of milk oligosaccharides of an African lion (Panthera leo) and a clouded leopard (Neofelis nebulosa). Anim. Sci. J. 81, 687–693 (2010)

    Article  CAS  Google Scholar 

  21. Nakamura, T., Urashima, T., Mizukami, T., Fukushima, M., Arai, I., Senshu, T., Imazu, K., Nakao, T., Saito, T., Ye, Z.: H. Zuo, H., Wu, K.: composition and oligosaccharides of a milk sample of the giant panda, Ailuropoda melanoleuca. Comp. Biochem. Physiol. B135, 439–448 (2003)

    Article  Google Scholar 

  22. Oftedal, O.T., Alt, G.L., Widdowson, E.M., Jakubasz, M.R.: Nutrition and growth of suckling black bears (Ursus americanus) during their mothers’ winter fast. Brit J Nutr. 70, 59–79 (1993)

    Article  CAS  Google Scholar 

  23. Oftedal, O.T., Iverson, S.J.: Phylogenetic variation in the gross composition of milks. In: Jensen, R. (ed.) Handbook of Milk Composition, Pp. 749–789. Academic Press, New York (1995)

    Google Scholar 

  24. Alt, G.L. Reproductive biology of female black bears and early growth and development of cubs in northeastern Pennsylvania. PhD Thesis, West Virginia University. (1989)

  25. Urashima, T., Bubb, W.A., Messer, M., Tsuji, Y., Taneda, Y.: Studies of the neutral trisaccharides of goat (Capra hircus) colostrum and of the one- and two-dimensional 1H and 13C NMR spectra of 6’-N-acetylglucosaminyllactose. Carbohydr. Res. 262, 173–184 (1994)

    Article  CAS  Google Scholar 

  26. Dubois, M., Gill, K.A., Hamilton, J.K., Roberts, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  CAS  Google Scholar 

  27. Jourdian, G.W., Dean, L., Roseman, S.: The sialic acid XI. A periodate – resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J. Biol. Chem. 256, 430–435 (1971)

    Google Scholar 

  28. Oftedal, O.T., Nicol, S.C., Davies, N.W., Sekii, N., Taifik, E., Fukuda, K., Saito, T., Urashima, T.: Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus). Glycobiology. 24, 826–839 (2014)

    Article  CAS  Google Scholar 

  29. Uemura, Y., Asakuma, S., Yon, L., Saito, T., Fukuda, K., Arai, I., Urashima, T.: Structural determination of the oligosaccharides in the milk of an Asian elephant (Elephas maximus). Comp. Biochem. Physiol. A145, 468–478 (2006)

    Article  Google Scholar 

  30. Urashima, T., Messer, M., Bubb, W.A.: Biosynthesis of marsupial milk oligosaccharides II: characterizeation of a β6-N-acetylglucosaminyltransferase in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochim. Biophys. Acta. 1117, 223–231 (1992)

    Article  CAS  Google Scholar 

  31. Urashima, T., Kawai, Y., Nakamura, T., Arai, I., Saito, T., Namiki, M., Yamaoka, K., Kawahara, K., Messer, M.: Chemical characterisation of six oligosaccharides in a sample of colostrum of the brown capuchin, Cebus apella (Cebidae: primate). Comp. Biochem. Physiol. A123, 187–193 (1999c)

    Article  Google Scholar 

  32. Bode, L.: Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 22, 11147–11162 (2012)

    Article  Google Scholar 

  33. Tao, N., Wu, S., Kim, J., Joo An, H., Hinde, K., Power, M., Gagneux, P., German, J.B., Lebrilla, C.B.: Evolutionary Glycomics: characterization of milk oligosaccharides in primates. J. Proteome Res. 10, 1548–1557 (2011). https://doi.org/10.1021/pr1009367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gal, B., Ruano, M.J., Puente, R., Garcia-Pardo, L.A., Rueda, R., et al.: Developmental changes in UDPN-acetylglucosamine 2-epimerase activity of rat and Guinea-pig liver. Comp. Biochem. Physiol. B Biochem.Mol. Biol. 118, 13–15 (1997)

    Article  CAS  Google Scholar 

  35. Duncan, P.I., Raymond, F., Fuerholz, A., Sprenger, N.: Sialic acid utilization and synthesis in the neonatal rat revisited. PLoS One. 4(12), e8241 (2009). https://doi.org/10.1371/journal.pone.0008241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, B., Brand-Miller, J., McNeil, Y., McVeagh, P., et al.: 1998 Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Comp. Biochem. Physiol. 119A, 435–439 (1998)

    Article  CAS  Google Scholar 

  37. Sprenger, N., Duncan, P.I.: Sialic acid utilization. Adv Nutr. 3(3), 392S–397S (2012). https://doi.org/10.3945/an.111.001479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, B., Brand-Miller, J.: The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutrit. 57, 1351–1369 (2003). https://doi.org/10.1038/sj.ejcn.1601704

    Article  CAS  Google Scholar 

  39. Wang, B.: Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29, 177–222 (2009). https://doi.org/10.1146/annurev.nutr.28.061807.155515

    Article  PubMed  Google Scholar 

  40. Nakamura, T., Kawase, H., Kimura, K., Watanabe, Y., Ohtani, M., Arai, I., Urashima, T.: Changes in bovine colostrum and milk sialyloligosaccharides during early lactation. J. Dairy Sci. 86, 1315–1320 (2003)

    Article  CAS  Google Scholar 

  41. Oftedal, O.T., Bowen, W.D., Boness, D.J.: Lactation performance and nutrient deposition in pups of the harp seal, Phoca groenlandica, on ice floes off Southeast Labrador. Physiol. Zool. 69, 635–657 (1996)

    Article  Google Scholar 

  42. Eisert, R., Potter, C.W., Oftedal, O.T.: Brain size in neonatal and adult Weddell seals: Costs and consequences of having a large brain. Marine Mammal Sci. 30(1), 184–205 (2014). https://doi.org/10.1111/mms.12033

    Article  Google Scholar 

  43. Oftedal, O.T., Gittleman, J.G.: Patterns of energy output during reproduction in carnivores. In: Gittleman, J.G. (ed.) Carnivore Behavior, Ecology and Evolution, pp. 375–378. Cornell University Press, Ithaca, N.Y (1989)

    Google Scholar 

  44. Groppetti, D., Pecile, A., Palestrini, C., Marelli, S.P., Boracchi, P.: A national census of birth weight in purebred dogs in Italy. Animal. 7, 43–63 (2017)

    Article  Google Scholar 

  45. Hawthome, A.J., Booles, D., Nugent, P.A., Gettinby, G., Wilkinson, J.: Body-weight changes during growth in puppies of different breeds. J. Nutr. 134, 2027S–2030S (2004)

    Article  Google Scholar 

  46. Scantlebury, M., Butterwick, R., Speakman, J.R.: Energetics of lactation in domestic dog (Canis familiaris) breeds of two sizes. Comp. Biochem. Physiol. A127, 197–210 (2000)

    Article  Google Scholar 

  47. Urashima, T., Messer, M., Oftedal, O.T.: Oligosaccharides in the milk of other mammals. In: McGuire, M.I., McGruire, M.A., Bode, L. (eds.) Prebiotics and probiotics in human milk, pp. 45–139. Academic Press, Amsterdam (2016)

    Google Scholar 

  48. Kobata, A.: Structures and application of oligosaccharides in human milk. Proc. Jpn. Acad. B. 86, 1–7 (2010)

    Article  Google Scholar 

  49. Bell, K.M., Rutherfurd, S.M., Cottam, Y.H., Hendriks, W.H.: Evaluation of two milk replacers fed to hand-reared cheetah cubs (Acinonyx jubatus): nutrient composition, apparent total tract digestibility, and comparison to maternal cheetah milk. Zoo Biology. 29, 1–15 (2010). https://doi.org/10.1002/zoo.20344

    Article  Google Scholar 

  50. Bell, K.M., Rutherfurd, S.M., Morton, R.H.: Growth rates and energy intake of hand-reared cheetah cubs (Acinonyx jubatus) in South Africa. J. Anim. Physiol. Anim. Nutr. 96, 182–190 (2012). https://doi.org/10.1111/j.1439-0396.2011.01133.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadasu Urashima.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

American black bear miks were collected In 1984 by, and according to research protocols of, the Pennsylvania Game Commission (Oftedal et al. [22]). The cheetah samples were collected for purposes other than research (e.g. veterinary diagnostics) prior to this study commencing. Samples were subsequently made available to the researchers on an opportunistic basis and ethical review undertaken by the relevant groups determined the study to be low risk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 1.29 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urashima, T., Umewaki, M., Taufik, E. et al. Chemical structures of oligosaccharides in milks of the American black bear (Ursus americanus americanus) and cheetah (Acinonyx jubatus). Glycoconj J 37, 57–76 (2020). https://doi.org/10.1007/s10719-019-09899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09899-7

Keywords

Navigation