Skip to main content
Log in

Facile Synthesis of ZnS Nanoparticles for Detection of O-nitrophenol

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The ZnS nanoparticles were synthesized by hydrothermal method using thioacetamide and zinc chloride as precursors, and characterized by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometer and AC impedance spectroscopy. Electrochemical behavior of O-nitrophenol at nano ZnS modified glassy carbon electrode was investigated, and the reduction mechanism was discussed. Determination of artificial samples using the standard addition method was proposed, and recoveries were in the range from 96.3 to 102.0% with RSD of 1.3–2.0% (n = 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. WHO, Guidelines for Drinking Water Quality, vol. 1 (World Health Organization, Geneva, 1984)

    Google Scholar 

  2. S.C. Moldoveanu, M. Kiser, Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J. Chromatogr. A 1141, 90–97 (2007)

    Article  CAS  Google Scholar 

  3. S.-J. Li, C. Qian, K. Wang, B.-Y. Hua, F.-B. Wang, Z.-H. Sheng et al., Application of thermally reduced graphene oxide modified electrode in simultaneous determination of dihydroxybenzene isomers. Sens. Actuators B 174, 441–448 (2012)

    Article  CAS  Google Scholar 

  4. M.F. Pistonesi, M.S. Di Nezio, M.E. Centurión, M.E. Palomeque, A.G. Lista, B.S.F. Band, Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69, 1265–1268 (2006)

    Article  CAS  Google Scholar 

  5. R. Belloli, B. Barletta, E. Bolzacchini, S. Meinardi, M. Orlandi, B. Rindone, Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography. J. Chromatogr. A 846, 277–281 (1999)

    Article  CAS  Google Scholar 

  6. A. Khan, A.A.P. Khan, M.M. Rahman, A.M. Asiri, Inamuddin, K.A. Alamry, S.A. Hameed, Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing. Appl. Surf. Sci. 433, 696–704 (2018)

    Article  CAS  Google Scholar 

  7. G. Gerent, G.A. Spinelli, Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. J. Hazard. Mater. 330, 105–115 (2017)

    Article  CAS  Google Scholar 

  8. M.K. Alam, M.M. Rahman, M. Abbas, S.R. Torati, A.M. Asiri, D. Kim, C.G. Kim, Ultra-sensitive 2-nitrophenol detection based on reduced graphene oxide/ZnO nanocomposites. J. Electroanal. Chem. 788, 66–73 (2017)

    Article  CAS  Google Scholar 

  9. Y.D.A. Kumar, G. Vellaichamy, M. Frank, G. Rupali, S.P. Kumar, Metal@MOF materials in electroanalysis: silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework-Ag@MOF-5(Zn). Electrochim. Acta 219, 482–491 (2016)

    Article  Google Scholar 

  10. K. Matras-Postołek, A. Zaba, E.M. Nowak, P. Dabczynski, J. Rysz, J. Sanetra, Formation and characterization of one-dimensional ZnS nanowires for ZnS/P3HT hybrid polymer solar cells with improved efficiency. Appl. Surf. Sci. 451, 180–190 (2018)

    Article  Google Scholar 

  11. X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulkac, K. Swierczekc, Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim. Acta 228, 100–106 (2017)

    Article  CAS  Google Scholar 

  12. B. Wei, H. Liang, R. Wang, D. Zhang, Z. Qi, Z. Wang, One-step synthesis of graphitic-C3N4/ZnS composites for enhanced supercapacitor performance. J. Energy Chem. 27, 472–477 (2018)

    Article  Google Scholar 

  13. S. Thangavel, K. Krishnamoorthy, S. Kim, G. Venugopal, Designing ZnS decorated reduced graphene-oxide nanohybrid via microwave route and their application in photocatalysis. J. Alloys Compd. 683, 456–462 (2016)

    Article  CAS  Google Scholar 

  14. Z. Han, X. Zheng, F. Hu, F. Qu, A. Umar, X. Wu, Facile synthesis of hollow ZnS nanospheres for environmental remediation. Mater. Lett. 160, 271–274 (2015)

    Article  CAS  Google Scholar 

  15. J.-R. Li, J.-F. Huang, L.-Y. Cao, J.-P. Wu, H.-Y. He, Synthesis and kinetics research of ZnS nanoparticles prepared by sonochemical process. Mater. Sci. Technol. 26, 1269–1272 (2010)

    Article  CAS  Google Scholar 

  16. T.T.Q. Hoa, T.D. Canh, N.N. Long, Preparation of ZnS nanoparticles by hydrothermal method. J. Phys: Conf. Ser. 187, 012081 (2009)

    Google Scholar 

  17. K. Ashwini, C. Pandurangappa, Solvothermal synthesis, characterization and photoluminescence studies of ZnS: Eu nanocrystals. Opt. Mater. 37, 537–542 (2014)

    Article  CAS  Google Scholar 

  18. G. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technol. 318, 8–22 (2017)

    Article  CAS  Google Scholar 

  19. Z. Gang, Z. Pei, T. Niu, L. Lin, J. Deng, J. Yong, Z. Jiao, X. Sun, Synthesis and characterization of ZnS nanotubes assisted by ethylene glycol quick view other sources. Mater. Lett. 189, 263–266 (2017)

    Article  CAS  Google Scholar 

  20. X. Xu, Self-encapsulated core-shell ZnS microspheres. Controlled synthesis, growth mechanism and photoluminescence properties. J. Nanosci. Nanotechnol. 14(4), 3277–3280 (2014)

    Article  CAS  Google Scholar 

  21. D. Fatemeh, M. Maryam, R.L.E. Mohammad, H. Zohreh, Synthesis of spherical ZnS based nanocrystals using thioglycolic assisted hydrothermal method. Cryst. Eng. Comm. 14(21), 338–7344 (2012)

    Google Scholar 

  22. M. Saeed Akhtar, S. Riaz, S. Naseem, Synthesis of ZnS nanoparticles by chemical bath deposition. Mater. Today: Proc. 2, 5691–5694 (2015)

    Google Scholar 

  23. C. Yao, H. Sun, H.-F. Fu, Z.-C. Tan, Sensitive simultaneous determination of nitrophenol isomers at poly (p-aminobenzene sulfonic acid) film modified graphite electrode. Electrochim. Acta 156, 163–170 (2015)

    Article  CAS  Google Scholar 

  24. L.Q. Luo, X.L. Zou, Y.P. Ding, Q.S. Wu, Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators B 135, 61–65 (2008)

    Article  CAS  Google Scholar 

  25. Z. Liu, X. Ma, H. Zhang, W. Lu, H. Ma, S. Hou, Simultaneous determination of nitro-phenol isomers based on β-cyclodextrin functionalized reduced graphene oxide. Electroanalysis 24, 1178–1185 (2012)

    Article  CAS  Google Scholar 

  26. K. Nejati, K. Asadpour-Zeynali, Z. Rezvani, R. Peyghami, Determination of 2-nitro-phenol by electrochemical synthesized Mg/Fe layered double hydroxide sensor. Int. J. Electrochem. Sci. 9, 5222–5234 (2014)

    CAS  Google Scholar 

  27. H. Zhang, Z.H. Wang, S.P. Zhou, Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting polymer film modified electrode. Sci. China B 48, 177–182 (2005)

    Article  CAS  Google Scholar 

  28. X. Xu, Z. Liu, X. Zhang, S. Duan, S. Xu, C. Zhou, β-Cyclodextrin functionalized meso-poroussilica for electrochemical selective sensor:simultaneousdetermination of ni-trophenol isomers. Electrochim. Acta 58, 142–149 (2011)

    Article  CAS  Google Scholar 

  29. T. Zhang, Q. Lang, D. Yang, L. Li, L. Zeng, C. Zheng, T. Li, M. Wei, A. Liu, Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 106, 127–134 (2013)

    Article  CAS  Google Scholar 

  30. L. Chu, L. Han, X. Zhang, Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J. Appl. Electrochem. 41, 687–694 (2011)

    Article  CAS  Google Scholar 

  31. M.K. Alam, M.M. Rahman, M. Abbas, S.R. Torati, A.M. Asiri, D. Kim, C. Kim, Ultra-sensitive 2-nitrophenol detection based on reduced grapheme oxide/ZnO nanocomposites. J. Electroanal. Chem. 788, 66–73 (2017)

    Article  CAS  Google Scholar 

  32. P. Deng, Z. Xu, J. Li, Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite. Microchim. Acta 181, 1077–1084 (2014)

    Article  CAS  Google Scholar 

  33. R.S. Nicholson, J.M. Wilson, M.L. Olmstead, Polarographic theory for an ECE mechanism application to reduction of p-nitrosophenol. Anal. Chem. 38, 542 (1966)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (Grant No. 20872046/B020901), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20160430), Opened Foundation of Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials (Grant No. JSKC17009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.Z., Dai, B.L., Zhang, L.L. et al. Facile Synthesis of ZnS Nanoparticles for Detection of O-nitrophenol. J Inorg Organomet Polym 30, 1320–1326 (2020). https://doi.org/10.1007/s10904-019-01244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01244-7

Keywords

Navigation