Skip to main content
Log in

Ethylene Conversion into Propylene and Aromatics on HZSM-5: Insights on Reaction Routes and Water Influence

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ethanol is an alternative for producing petrochemicals, especially propylene and aromatics (benzene, toluene, and xylenes). To understand ethanol processing routes into olefins and aromatics, it is interesting to use ethylene that is the major primary product of ethanol reaction into hydrocarbons and the intermediate for the formation of olefins and aromatics. In this work, the influence of the operating conditions (ethylene partial pressure, reaction temperature and contact time) in the ethylene conversion into propylene and aromatics, and in the product yield was investigated using HZSM-5 zeolite as catalyst. Lower contact time and ethylene partial pressure, and higher reaction temperature favored propylene yield. Olefin production was based on the formation of carbene species from ethylene that reacts with ethylene to produce propylene and on ethylene dimerization to form butenes. On the other hand, intermediate reaction temperatures and contact times, and higher ethylene partial pressure promote the formation of aromatics, where the dehydrocyclization reaction is favored over hydrogen transfer. The presence of water vapor in long-term reactions deactivated the catalyst. For propylene production, the decrease of ethylene conversion was due to zeolite framework dealumination, while for aromatic formation the reaction mechanism was changed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T (2012) Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Appl Catal A 423–424:162–167

    Google Scholar 

  2. Gayubo A, Alonso A, Valle B, Aguayo A, Olazar M, Bilbao J (2011) Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke. Chem Eng J 167:262–277

    CAS  Google Scholar 

  3. Madeira F, Gnep N, Magnoux P, Maury S, Cadran N (2009) Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity. Appl Catal A 367:39–46

    CAS  Google Scholar 

  4. Song Z, Takahashi A, Mimura N, Fujitani T (2009) Production of propylene from ethanol over ZSM-5 zeolites. Catal Lett 131:364–369

    CAS  Google Scholar 

  5. Inaba M, Murata K, Saito M, Takahara I (2006) Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. React Kinet Catal Lett 88:135–141

    CAS  Google Scholar 

  6. Sousa Z, Veloso C, Henriques C, da Silva V (2016) Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: Influence of reaction conditions and surface reaction studies. J Mol Catal A 422:266–274

    CAS  Google Scholar 

  7. Aguayo A, Gayubo A, Atutxa A, Olazar M, Bilbao J (2002) Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst. Ind Eng Chem Res 41:4216–4224

    CAS  Google Scholar 

  8. Ghashghaee M (2018) Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins. Rev Chem Eng 34:595–655

    CAS  Google Scholar 

  9. Hulea V (2018) Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal 8:3263–3279

    CAS  Google Scholar 

  10. Li X, Kant A, He Y, Thakkar H, Atanga M, Rezaei F, Ludlow D, Rownaghi A (2016) Light olefins from renewable resources: selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts. Catal Today 276:62–77

    CAS  Google Scholar 

  11. Epelde E, Aguayo A, Olazar M, Bilbao J, Gayubo A (2014) Modifications in the HZSM-5 zeolite for the selective transformation of ethylene into propylene. Appl Catal A 479:17–25

    CAS  Google Scholar 

  12. Batchu R, Galvita V, Alexopoulos K, van der Borght K, Poelman H, Reyniers M-F, Marin G (2017) Role of intermediates in reaction pathways from ethene to hydrocarbons over H-ZSM-5. Appl Catal A 538:207–220

    CAS  Google Scholar 

  13. Lin B, Zhang Q, Wang Y (2009) Catalytic conversion of ethylene to propylene and butenes over H − ZSM-5. Ind Eng Chem Res 48:10788–10795

    CAS  Google Scholar 

  14. Dai W, Sun X, Tang B, Wu G, Li L, Guan N, Hunger M (2014) Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13. J Catal 314:10–20

    CAS  Google Scholar 

  15. Takahashi A, Xia W, Wu Q, Furukawa T, Nakamura I, Shimada H, Fujitani T (2013) Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts. Appl Catal A 467:380–385

    CAS  Google Scholar 

  16. Gayubo A, Tarrío A, Aguayo A, Olazar M, Bilbao J (2001) Kinetic modelling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite. Ind Eng Chem Res 40:3467–3474

    CAS  Google Scholar 

  17. Johansson R, Hruby S, Rass-Hansen J, Christensen C (2009) The hydrocarbon pool in ethanol-to-gasoline over HZSM-5 catalysts. Catal Lett 127:1–6

    CAS  Google Scholar 

  18. van der Borght K, Batchu R, Galvita V, Alexopoulos K, Reyniers M-F, Thybaut J, Marin G (2016) Insights into the Reaction Mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angew Chem Int Ed 55:12817–12821

    Google Scholar 

  19. Allotta P, Stair P (2012) Time-resolved studies of ethylene and propylene reactions in zeolite H-MFI by in situ fast IR heating and UV raman spectroscopy. ACS Catal 2:2424–2432

    CAS  Google Scholar 

  20. Ferreira Madeira F, Gnepa N, Magnoux P, Vezin H, Maury S, Cadran N (2010) Mechanistic insights on the ethanol transformation into hydrocarbons over HZSM-5 zeolite. Chem Eng J 161:403–408

    Google Scholar 

  21. Ferreira Madeira F, Vezin H, Gnep N, Magnoux P, Maury S, Cadran N (2011) Radical species detection and their nature evolution with catalyst deactivation in the ethanol-to-hydrocarbon reaction over HZSM-5 zeolite. ACS Catal 1:417–424

    Google Scholar 

  22. Chang C, Silvestri A (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    CAS  Google Scholar 

  23. Yamazaki H, Shima H, Imai H, Yokoi T, Tatsumi T, Kondo J (2012) Direct production of propene from methoxy species and dimethyl ether over H-ZSM-5. J Phys Chem C 116:24091–24097

    CAS  Google Scholar 

  24. Yamazaki H, Shima H, Imai H, Yokoi T, Tatsumi T, Kondo J (2011) Evidence for a “Carbene-like” intermediate during the reaction of methoxy species with light alkenes on H-ZSM-5. Angew Chem Int Ed 50:1853–1856

    CAS  Google Scholar 

  25. Costa E, Uguina A, Aguado J, Hernández P (1985) Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Ind Eng Chem Process Des Dev 24:239–244

    CAS  Google Scholar 

  26. Derouane E, Nagy J, Dejaifve P, van Hooff J, Spekman B, Vedrine J, Naccache C (1978) Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. J Catal 53:40–55

    CAS  Google Scholar 

  27. Spoto G, Bordiga S, Ricchiardi G, Scarano D, Zecchina A, Borello E (1994) IR study of ethene and propene oligomerization on H-ZSM-5: hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers. J Chem Soc Faraday Trans 90:2827–2835

    CAS  Google Scholar 

  28. Bolis V, Vedrine J, van De Berg J, Wolthuizen J, Derouane E (1980) Adsorption and activation of ethene by zeolite-H-ZSM-5. J Chem Soc Faraday Trans 1(76):1606–1616

    Google Scholar 

  29. Kim H, Kim J-W, Kim N, Kim T-W, Jhung S, Kim C-U (2017) Controlling size and acidity of SAPO-34 catalyst for efficient ethylene to propylene transformation. Mol Catal 438:86–92

    CAS  Google Scholar 

  30. Chu Y, Han B, Zheng A, Deng F (2012) Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts: a theoretical calculation study. J Phys Chem C 116:12687–12695

    CAS  Google Scholar 

  31. Katada N, Igi H, Kim J-H, Niwa M (1997) Determination of the acidic properties of zeolites by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J Phys Chem B 101:5969–5977

    CAS  Google Scholar 

  32. Katada N, Miyamoto T, Begum H, Naito N, Niwa M, Matsumoto A, Tsutsumi K (2000) Strong acidity of MFI-type ferrisilicate determined by temperature-programmed desorption of ammonia. J Phys Chem B 104:5511–5518

    CAS  Google Scholar 

  33. Epelde E, Ibañez M, Aguayo AT, Gayubo AG, Bilbao J, Castaño P (2014) Differences among the deactivation pathway of HZSM-5 zeolite and SAPO-34 in the transformation of ethylene or 1-butene to propylene. Microporous Mesoporous Mater 195:284–293

    CAS  Google Scholar 

  34. Blasco T, Corma A, Martínez-Triguero J (2006) Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J Catal 237:267–277

    CAS  Google Scholar 

  35. Beran S, Jirú P, Kubelková L (1981) Quantum chemical study of the interaction of ethylene and propylene with the hydroxyl groups of zeolites. J Mol Catal 12:341–349

    CAS  Google Scholar 

  36. Oikawa H, Shibata Y, Inazu K, Iwase Y, Murai K, Hyodo S, Kobayashi G, Baba T (2006) Highly selective conversion of ethene to propene over SAPO-34 as a solid acid catalyst. Appl Catal A 312:181–185

    CAS  Google Scholar 

  37. Ingram C, Lancashire R (1995) On the formation of C3 hydrocarbons during the conversion of ethanol using H-ZSM-5 catalyst. Catal Lett 31:395–403

    CAS  Google Scholar 

  38. Lin L, Qiu C, Zhuo Z, Zhang D, Zhao S, Wu H, Liu Y, He M (2014) Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J Catal 309:136–145

    CAS  Google Scholar 

  39. Choudhary V, Banerjee S, Panjala D (2002) Influence of temperature on the product selectivity and distribution of aromatics and C8 aromatic isomers in the conversion of dilute ethene over H-Galloaluminosilicate (ZSM-5 type) zeolite. J Catal 205:398–403

    CAS  Google Scholar 

  40. Guisnet M, Costa L, Ribeiro F (2009) Prevention of zeolite deactivation by coking. J Mol Catal A 305:69–83

    CAS  Google Scholar 

  41. Jun J-W, Khan N, Seo P, Kim C-U, Kim H, Jhung S (2016) Conversion of Y into SSZ-13 zeolites and ethylene-to-propylene reactions over the obtained SSZ-13 zeolites. Chem Eng J 303:667–674

    CAS  Google Scholar 

Download references

Acknowledgements

Débora S. Fernandes thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – Finance Code 001) for M.Sc. scholarship and financial support. Cristiane A. Henriques thanks CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Prociencia program (Universidade do Estado do Rio de Janeiro) for her research scholarship and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane A. Henriques.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, D.S., Veloso, C.O. & Henriques, C.A. Ethylene Conversion into Propylene and Aromatics on HZSM-5: Insights on Reaction Routes and Water Influence. Catal Lett 150, 738–752 (2020). https://doi.org/10.1007/s10562-019-02954-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02954-w

Keywords

Navigation