Skip to main content

Advertisement

Log in

Multi-criteria Decision-Making Approaches to Agricultural Land Suitability Classification of Malda District, Eastern India

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Land suitability classification (LSC) is an approach of land evaluation, which measures the degree of appropriateness of land for a specific land use. LSC is governed by a myriad of factors at the local and regional level including physiographic, pedologic and a host of socioeconomic and infrastructural determinants. This has called for the application of different multi-criteria decision-making (MCDM) techniques in agricultural LSC. The present study has attempted and compared various MCDM-based agricultural LSCs for Malda District in Eastern India. The study is based on multiple parameters governing agriculture, considering not only the physiographic and pedological attributes (e.g., relief, slope, soil fertility, soil organic carbon, etc.) but also the socioeconomic ones (e.g., the percentage of people engaged in agriculture, cultivator–labor ratio, degree of electrification, etc.). Four major MCDM algorithms have been applied, i.e., composite ranks, composite Z-scores, analytical hierarchy process (AHP) and weighted principal component analysis (WPCA). The results were also compared with the crop productivity-based agricultural efficiency. It was observed that about 15.44% of the area of Malda District is highly suitable for agriculture, whereas limited suitability is displayed by about 12.68% of area. The remaining part falls under moderate and marginal suitability classes. Furthermore, WPCA and AHP are superior to the nonparametric techniques of MCDM, namely composite ranks and composite Z-score. Moreover, the results of WPCA are superior to those of AHP. Due to the inherent limitations of the AHP approach, this study proposes the use of WPCA in the domain of agricultural LSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Acevedo, M. F. (2013). Data analysis and statistics for geography and environmental science and engineering. Boca Raton: CRC Press.

    Google Scholar 

  • Akinci, H., Ozalp, A. Y., & Turgut, B. (2013). Agriculture land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture,97, 71–82.

    Google Scholar 

  • Alphonce, C. B. (1997). Application of the analytic hierarchy process in agriculture in developing countries. Agricultural Systems,53, 97–112.

    Google Scholar 

  • Amara, D. M. K., Patil, P. L., Kamara, A. M., & Saidu, D. H. (2017). Assessment of soil fertility status using nutrient index approach. Academia Journal of Agricultural Research,5(2), 28–38.

    Google Scholar 

  • Bagchi, K. G. (1944). The Ganges delta. Kolkata: Calcutta University Press.

    Google Scholar 

  • Bandyopadhyay, S., Jaiswal, R. K., Hegde, V. S., & Jayaraman, V. (2009). Assessment of land suitability potentials for agriculture using a remote sensing and GIS based approach. International Journal of Remote Sensing,30(4), 879–895.

    Google Scholar 

  • Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., & Viaggi, D. (2018). Multicriteria analysis in agriculture, current trends and recent applications. Berlin: Springer. https://doi.org/10.1007/978-3-319-76929-5. ISBN 978-3-319-76929-5 (eBook).

    Book  Google Scholar 

  • Bhatia, S. S. (1967). A new measure of agricultural efficiency in Uttar Pradesh, India. Economic Geography,43, 244–260.

    Google Scholar 

  • Boender, C. G. E., de Granne, J. G., & Lootsma, F. A. (1989). Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets and Systems,29, 133–143.

    Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2009jf001426.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2005). The nature and properties of soil (13th ed.). New York: Macmillan Publishing Co.

    Google Scholar 

  • Brewer, C. A., & Pickle, L. (2002). Evaluation of methods for classifying epidemiological data on choropleth maps in series. Annals of the Association of American Geographers,92, 662–681.

    Google Scholar 

  • Burrough, P. A., Macmillan, R. A., & van Deursen, W. (1992). Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of Soil Science,43, 193–210.

    Google Scholar 

  • Cai, R., Mullen, J. D., Bergstrom, J. C., Shurley, W. D., & Wetzstein, M. E. (2013). Using a climate index to measure crop yield response. Journal of Agricultural and Applied Economics,4, 719–737.

    Google Scholar 

  • Cengiz, T., & Akbulak, C. (2009). Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: a case study of Dumrek village. International Journal of Sustainable Development and World Ecology,16(4), 286–294.

    Google Scholar 

  • Chen, J., Yang, S., Li, H., Zhang, B., & Lv, J. (2013). Research on geographical environment unit division based on the method of natural breaks (Jenks). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,XL-4/W-3, 47–50.

    Google Scholar 

  • Clayton, D. B., & Dent, D. (1993). Surveys, plans and people: A review of land resource information and its use in developing countries. Environmental Planning Issues No. 2. London: International Institute for Environment and Development (IIED).

    Google Scholar 

  • Coulson, M. R. C. (1987). In the matter of class intervals for choropleth maps: With particular reference to the work of George Jenks. Cartographica,24(2), 16–39.

    Google Scholar 

  • Cozzi, M., Prete, C., Viccaro, M., & Romano, S. (2019). Impacts of wildlife on agriculture: A spatial-based analysis and economic assessment for reducing damage. Natural Resources Research,28(supplement 1), 15–29.

    Google Scholar 

  • Das, S., Patel, P. P., & Sengupta, S. (2016). Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: A case study of the Supin-Upper Tons Basin, Indian Himalayas. SpringerPlus,5(1), 1544.

    Google Scholar 

  • Derrick, J., & Boiten, E. A. (2014). Refinement in Z and Object-Z foundations and advanced applications. Berlin: Springer.

    Google Scholar 

  • District Statistical Handbook. (2014). Bureau of Applied Economics and Statistics, Department of Statistics and Programme Implementation, Government of West Bengal, India.

  • Dutta, S. (2012). Assessment of agricultural efficiency and productivity: A study of Hugli district, West Bengal, India. International Journal of Current Research,4, 190–195.

    Google Scholar 

  • Ennaji, W., Barakat, A., El Baghdadi, M., Oumenskou, H., Aadraoui, M., Karroum, L. A., et al. (2018). GIS-based multi-criteria land suitability analysis for sustainable agriculture in the northeast area of Tadla plain (Morocco). Journal of Earth System Science,127(6), 79. https://doi.org/10.1007/s12040-018-0980.

    Article  Google Scholar 

  • Essa, J. A., & Nieuwoudt, W. L. (2003). Socio-economic dimensions of small-scale agriculture: A principal component analysis. Development Southern Africa,20(1), 67–73.

    Google Scholar 

  • Feizizadeh, B., & Blaschke, T. (2013). Land suitability analysis for Tabriz County, Iran: A multi-criteria evaluation approach using GIS. Journal of Environmental Planning and Management,56(1), 1–23.

    Google Scholar 

  • Food & Agricultural Organization (FAO) of the United Nations. (1976). A framework for land evaluation. FAO Soils Bulletin 32.

  • Food & Agricultural Organization (FAO) of the United Nations. (1985). Guidelines: Land evaluation for irrigated agriculture. FAO Soils Bulletin 55.

  • Foshtomi, D., Norouzi, M. M., Rezaei, M., Akef, M., & Akbarzadeh, A. (2011). Qualitative and economic land suitability evaluation for tea (Camellia sinensis L.) in sloping area of Guilan, Iran. Journal of Biological and Environmental Sciences,5, 135–146.

    Google Scholar 

  • Grippo, V., Romano, S., & Vastola, A. (2019). Multicriteria evaluation of bran use to promote circularity in the cereal production chain. Natural Resources Research,28, 125–137.

    Google Scholar 

  • Holder, R. D. (1990). Some comments on the analytic hierarchy process. Journal of the Operational Research Society,41(11), 1073–1076.

    Google Scholar 

  • Hoseini, Y. (2019). Use fuzzy interface systems to optimize land suitability evaluation for surface and trickle irrigation. Information Processing in Agriculture,6, 11–19.

    Google Scholar 

  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography,7, 186–190.

    Google Scholar 

  • Joerin, F., Theriault, M., & Musy, A. (2001). Using GIS and outranking multi-criteria analysis for land-use suitability assessment. International Journal of Geographical Information Science,15, 153–174.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis, Springer series in statistics (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Kalogirou, S. (2002). Expert systems and GIS: An application of land suitability evaluation. Computers, Environment and Urban Systems,26, 89–112.

    Google Scholar 

  • Kendall, M. (1948). Rank correlation methods. London: Charles Griffin and Co.

    Google Scholar 

  • Kennedy, G. A., Henning, S. A., Vandeveer, R. L., & Dai, M. (1997). Multivariate procedures for identifying rural land submarkets. Journal of Agricultural and Applied Economics,29, 373–383.

    Google Scholar 

  • Liu, Y.-S., Wang, J.-Y., & Guo, L.-Y. (2006). GIS-based assessment of land suitability for optimal allocation in the Qinling Mountains, China. Pedosphere,16(5), 579–586.

    Google Scholar 

  • Liu, Y. S., Zhang, Y. Y., & Guo, L. Y. (2010). Towards realistic assessment of cultivated land quality in an ecologically fragile environment: A satellite imagery-based approach. Applied Geography,30, 271–281.

    Google Scholar 

  • Luo, X., & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Computers & Geosciences,29, 3–13.

    Google Scholar 

  • Macharis, C., Springael, J., Brucker, D. K., & Verbeke, A. (2004). PROMETHEE and AHP: The design of operational synergies in multicriteria analysis. Strengthening PROMETHEE with ideas of AHP. European Journal of Operational Research,153, 307–317.

    Google Scholar 

  • Mahabadi, N. Y., Givia, J., Khorasgania, M. N., Mohammadia, J., & Claret, R. M. P. (2012). Land suitability evaluation for Alfalfa and Barley based on FAO and fuzzy multi-criteria approaches in Iranian arid region. Desert,17(1), 77–89.

    Google Scholar 

  • Malczewski, J. (2004). GIS-based land suitability: A critical overview. Progress in Planning,62, 3–65.

    Google Scholar 

  • Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation. Journal of Geographical Systems,7(2), 249–268.

    Google Scholar 

  • Mark, D. M., & Church, M. (1977). On the misuse of regression in earth science. Mathematical Geology,9, 63–75.

    Google Scholar 

  • Mendas, A., & Delali, A. (2012). Integration of multi-criteria decision analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Computers and Electronics in Agriculture,83, 117–126.

    Google Scholar 

  • Mistri, P., Singha, B. K., & Sengupta, S. (2018). Land suitability classification for agricultural potentiality in Kaliachak III Block, Malda District, West Bengal, Discourses on Eastern India (pp. 182–196). Kolkata: Rhito Prakashan.

    Google Scholar 

  • Mokarram, M., Hamzeh, S., Aminzadeh, F., & Zarei, A. R. (2015). Using machine learning for land suitability classification. West African Journal of Applied Ecology,23(1), 63–73.

    Google Scholar 

  • Mustafa, A. A., Singh, M., Sahoo, R. N., Ahmed, N., Khanna, M., Sarangi, A., et al. (2011). Land suitability analysis for different crops: A multi-criteria decision making approach using remote sensing and GIS. Researcher,3(12), 61–84.

    Google Scholar 

  • Neamatollahi, E., Vafabakhshi, J., Jahansuz, M. R., & Sharifzadeh, F. (2017). Agricultural optimal cropping pattern determination based on fuzzy system. Fuzzy Information and Engineering,9, 479–491.

    Google Scholar 

  • Neave, H. R., & Worthington, P. L. (1992). Distribution-free test. Abingdon: Routledge.

    Google Scholar 

  • Peng, W., & Zhou, J. (2019). Development of land resources in transitional zones based on ecological security pattern: A case study in China. Natural Resources Research. https://doi.org/10.1007/s11053-018-9401-8.

    Article  Google Scholar 

  • Rabia, A. H., & Terribile, F. (2013). Introducing a new parametric concept for land suitability assessment. International Journal of Environmental Science and Development,4(1), 15–19.

    Google Scholar 

  • Riccioli, F., Gabbrielli, E., Casini, L., Marone, E., ElAsmar, J. P., & Fratini, R. (2019). Geographical analysis of agro-environmental measures for reduction of chemical inputs in Tuscany. Natural Resources Research,28, 93–110.

    Google Scholar 

  • Romano, S., Cozzi, M., Viccaro, M., & di Napoli, F. (2013). The green economy for sustainable development: A spatial multi-criteria analysis-ordered weighted averaging approach in the siting process for short rotation forestry in the Basilicata Region, Italy. Italian Journal of Agronomy,8(3), 160–167.

    Google Scholar 

  • Rotaru, A. S., Pop, I. D., Vatca, A., & Cioban, A. (2012). Usefulness of principal components analysis in Agriculture. Bulletin UASVM Horticulture,69(2), 504–509.

    Google Scholar 

  • Roy, J., & Saha, S. (2018). Assessment of land suitability for the paddy cultivation using analytical hierarchical process (AHP): A study on Hinglo river basin, Eastern India. Modeling Earth Systems and Environment.. https://doi.org/10.1007/s40808-018-0467-4.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York, NY: McGraw Hill International.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.

    Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences,1(1), 83–98.

    Google Scholar 

  • Samanta, S., Pal, B., & Pal, D. K. (2011). Land suitability analysis for rice cultivation based on multi-criteria decision approach through GIS. International Journal of Science & Emerging Technologies,2, 12–20.

    Google Scholar 

  • Sarkar, A., Ghosh, A., & Banik, P. (2014). Multi-criteria land evaluation for suitability analysis of wheat: a case study of a watershed in Eastern Plateau Region, India. Geo-spatial Information Science,17, 119–128.

    Google Scholar 

  • Sathish, A., & Niranjana, K. V. (2010). Land suitability studies for major crops in Pavagada Taluk, Karnataka using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing,38, 143–151.

    Google Scholar 

  • Schoner, B., & Wedley, C. W. (1989). Ambiguous criteria weights in AHP: Consequences and solutions. Decision Science,20, 462–475.

    Google Scholar 

  • Shalaby, A., Ouma, Y. O., & Tateishi, R. (2006). Land suitability assessment for perennial crops using remote sensing and geographic information systems: A case study in north-western Egypt. Archives of Agronomy and Soil Science,52(3), 243–261.

    Google Scholar 

  • Singh, L. P., Prakash, B., & Singhvi, A. K. (1998). Evolution of the lower gangetic plain landforms and soils in West Bengal, India. CATENA,33, 75–104.

    Google Scholar 

  • Singh, G., Sharma, M., Manan, J., & Singh, G. (2016). Assessment of soil fertility status under different cropping sequences in District Kapurthala. Journal Krishi Vigyan,5(1), 1–9.

    Google Scholar 

  • Store, R., & Kangas, J. (2001). Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling. Landscape and Urban Planning,55(2), 79–93.

    Google Scholar 

  • Sys, I. C., Van Ranst, B., Debaveye, J., & Beernaert, F. (1991). Land Evaluation. Part I, Crop Production Calculation, Agricultural Publication No. 7. Brussels: General Administration for Development Cooperation.

    Google Scholar 

  • Tapia, B. A. L., Salomon, N. M., & Ezcurra, E. (2001). GIS-based approach for participatory decision making and land suitability assessment. International Journal of Geographical Information Science,15, 129–151.

    Google Scholar 

  • Viccaro, M., Cozzi, M., Vastola, A., & Romano, S. (2018). Promoting small-scale biofuel production: A qualitative GIS-OWA methodology for land suitability analysis of winter rapeseed. In J. Berbel, T. Bournaris, B. Manos, N. Matsatsinis, & D. Viaggi (Eds.), Multicriteria analysis in agriculture (pp. 151–165). Cham: Springer.

    Google Scholar 

  • Wali, E., Datta, A., Shrestha, R. P., & Shrestha, S. (2015). Development of a land suitability model for saffron (Crocus sativus L.) cultivation in Khost Province of Afghanistan using GIS and AHP techniques. Archives of Agronomy and Soil Science, 62(7), 921–934.

    Google Scholar 

  • Wallis, J. R. (1965). Multivariate statistical methods in hydrology—A comparison using data of known functional relationship. Water Resources Research,4, 447–461.

    Google Scholar 

  • Weijland, H. (1999). Microenterprise clusters in rural Indonesia: Industrial seedbed and policy target. World Development,27, 1515–1530.

    Google Scholar 

  • Wuttichaikitcharoen, P., & Babel, S. M. (2014). Principal component and multiple regression analyses for the estimation of suspended sediment yield in Ungauged Basins of Northern Thailand. Water,6, 2412–2435. https://doi.org/10.3390/w6082412.

    Article  Google Scholar 

  • Yalew, S. G., van Griensven, A., Mul, M. L., & van der Zaag, P. (2016). Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Modeling Earth Systems and Environment,2(2), 101.

    Google Scholar 

  • Yu, J., Chen, Y., & Wu, J. (2011). Cellular automata based spatial multi-criteria land suitability simulation for irrigated agriculture. International Journal of Geographical Information Science,25, 131–148.

    Google Scholar 

  • Zhang, J., Su, Y., Wua, J., & Liang, H. (2015). GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong Province of China. Computers and Electronics in Agriculture,114, 202–211.

    Google Scholar 

  • Zipkin, P. H. (1980). Simple ranking methods for allocation of one resource. Journal of Management Science. https://doi.org/10.1287/mnsc.26.1.34.

    Article  Google Scholar 

  • Zolekar, R. B., & Bhagat, V. S. (2015). Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Computers and Electronics in Agriculture,118(C), 300–332.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. John Carranza, Editor, and two anonymous reviewers for their constructive suggestions, which help us to improve the clarity of previous versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Mistri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistri, P., Sengupta, S. Multi-criteria Decision-Making Approaches to Agricultural Land Suitability Classification of Malda District, Eastern India. Nat Resour Res 29, 2237–2256 (2020). https://doi.org/10.1007/s11053-019-09556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09556-8

Keywords

Navigation