Skip to main content
Log in

Granular Mining and Big Data Analytics: Rough Models and Challenges

  • Review Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Data analytics in granular computing framework is considered for several mining applications, such as in video analysis, bioinformatics and online social networks which have all the characteristics of Big data. The role of granulation, lower approximation and rf information measure is exhibited. While the lower approximation over a video sequence signifies the object model for unsupervised tracking, it characterizes the probability (relative frequency) of definite regions in ranking miRNAs for normal and cancer classification. For neural learning, the information on definite region is used as the initial knowledge for encoding while generating the networks through evolution. Granules considered are of different sizes and dimensions with fuzzy and crisp boundaries. The tracking method is effective in handling different ambiguous situations, e.g., overlapping objects, newly appeared object(s), multiple objects in different directions and speeds, in unsupervised mode. The ranking algorithm could find only 1% miRNAs to result in significantly higher F-score than the entire set. Fuzzy–rough communities detected over the granular model of social networks are suitable in dealing with overlapping virtual communities in Big data. The knowledge encoding based on fuzzy–rough set provides superior performance than that of rough set. Future directions of research and challenges including the significance of z-numbers in precisiation of granules are stated. The article includes some of the results published elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pal SK, Meher SK (2013) Natural computing: a problem solving paradigm with granular information processing. Appl Soft Comput 13(9):3944–3955

    Google Scholar 

  2. Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90:111–127

    MathSciNet  MATH  Google Scholar 

  3. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    MATH  Google Scholar 

  4. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  5. Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111

    Google Scholar 

  6. Pedrycz W (2001) Granular computing: an emerging paradigm. Physica-Verlag, Heidelberg

    MATH  Google Scholar 

  7. Polkowski L, Skowron A (1998) Towards adaptive calculus of granules. In: Proceedings of the 7th IEEE international conference on fuzzy system, Anchorage, AK, USA, May 1998, pp 111–116

  8. Yao JT, Vasilakos AV, Pedrycz W (2013) Granular computing: perspectives and challenges. IEEE Trans Cybern 43(6):1977–1989

    Google Scholar 

  9. Komorouski J, Pawlak Z, Polkowski L, Skowron A (1999) Rough sets: a tutorial. In: Pal SK, Skowron A (eds) Rough fuzzy hybridization: a new trend in decision making. Springer, Singapore, pp 3–98

    Google Scholar 

  10. Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inf Sci 177:3–27

    MathSciNet  MATH  Google Scholar 

  11. Sen D, Pal SK (2009) Generalized rough sets, entropy and image ambiguity measures. IEEE Trans Syst Man Cybern Part B 39(1):117–128

    Google Scholar 

  12. Pal SK (2012) Granular mining and rough–fuzzy pattern recognition: a way to natural computation, (Feature Article). IEEE Intell Inf Bull 13(1):3–13

    Google Scholar 

  13. Pal SK, Mitra P (2004) Case generation using rough sets with fuzzy discretization. IEEE Trans Knowl Data Eng 16(3):292–300

    Google Scholar 

  14. Qian Y, Lian J, Yao Y, Dang C (2010) MGRS: a multi-granulation rough set. Inf Sci 180:949–970

    MathSciNet  MATH  Google Scholar 

  15. Pal SK, Meher SK, Dutta S (2012) Class-dependent rough–fuzzy granular space, dispersion index and classification. Pattern Recognit 45(7):2690–2707

    Google Scholar 

  16. Zhu W, Wang FY (2007) On three types of covering-based rough sets. IEEE Trans Knowl Data Eng 19(8):1649–1667

    Google Scholar 

  17. Maggio E, Cavallaro A (2010) Video tracking: theory and practice. Wiley, New York

    MATH  Google Scholar 

  18. Pal SK, Petrosino A, Maddalena L (eds) (2012) Handbook on soft computing for video surveillance. CRC Press, Boca Raton

    MATH  Google Scholar 

  19. Pal SK, Bhunia Chakraborty D (2017) Granular flow graph, adaptive rule generation and tracking. IEEE Trans Cybern 47(12):4096–4107

    Google Scholar 

  20. Pawlak Z (2005) Flow graphs and data mining. Springer, Heidelberg

    MATH  Google Scholar 

  21. Bhunia Chakraborty D, Pal SK (2016) Neighborhood granules and rough rule-base in tracking. Natural Computing (special issue on pattern recognition and mining), Springer, vol. 15, no. 3, pp 359–370

  22. Chakraborty D, Uma Shankar B, Pal SK (2013) Granulation, rough entropy and spatiotemporal moving object detection. Appl Soft Comput 13(9):4001–4009

    Google Scholar 

  23. Bhunia Chakraborty D, Pal SK (2018) Neighborhood rough filter and intuitionistic entropy in unsupervised tracking. IEEE Trans Fuzzy Syst 26:2188–2200. https://doi.org/10.1109/tfuzz.2017.2768322

    Article  Google Scholar 

  24. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38:1264–1291

    Google Scholar 

  25. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25:564–577

    Google Scholar 

  26. Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25:1337–1342

    Google Scholar 

  27. Fang H, Jiang J, Feng Y (2006) A fuzzy logic approach for detection of video shot boundaries. Pattern Recognit 39:2092–2100

    MATH  Google Scholar 

  28. Pan P, Schonfeld D (2011) Video tracking based on sequential particle filtering on graphs. IEEE Trans Image Process 20(6):1641–1651

    ADS  MathSciNet  MATH  Google Scholar 

  29. Shen C, Kim J, Wang H (2010) Generalized kernel-based visual tracking. IEEE Trans Circuits Syst Video Technol 20:119–130

    Google Scholar 

  30. Maddalena L, Petrosino A, Ferone A (2008) Object motion detection and tracking by an artificial intelligence approach. Int J Patt Recognit Artif Intell 22:915–928

    Google Scholar 

  31. Dai S, Ren W, Gu F, Huang H, Chang S (2008) Implementation of robot visual tracking system based on rough set theory. In: Proceedings of the fifth international conference on fuzzy systems and knowledge discovery (FSKD 2008), IEEE Computer Society, vol 2, pp 155–160

  32. Zhang K, Zhang L, Yang M-H (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36:2002–2015

    Google Scholar 

  33. Huang C-M, Fu L-C (2011) Multitarget visual tracking based effective surveillance with cooperation of multiple active cameras. IEEE Trans Syst Man Cybern B Cybern 41L:234–247

    Google Scholar 

  34. Nawaz T, Poiesi F, Cavallaro A (2014) Measures of effective video tracking. IEEE Trans Image Process 23:376–388

    ADS  MathSciNet  MATH  Google Scholar 

  35. Pal JK, Ray SS, Chow SB, Pal SK (2018) Fuzzy-rough entropy measure and histogram based patient selection for miRNA ranking in cancer. IEEE/ACM Trans Comput Biol Bioinf 15(2):659–672

    Google Scholar 

  36. Pal JK, Ray SS, Pal SK (2016) Identifying relevant group of miRNAs in cancer using fuzzy mutual information”. Med Biol Eng Comput 54(4):701–710

    Google Scholar 

  37. Pal JK, Ray SS, Pal SK (2017) Fuzzy mutual information based grouping and new fitness function for PSO in selection of miRNAs in cancer. Comput Biol Med 89:540–548

    Google Scholar 

  38. Maji P, Pal SK (2010) Fuzzy-rough sets for information measures and selection of relevant genes from microarray data. IEEE Trans Syst Man Cybern Part B Cybern 40(3):741–752

    Google Scholar 

  39. Yu L, Han Y, Berens ME (2012) Stable gene selection from microarray data via sample weighting. IEEE/ACM Trans Comput Biol Bioinf 9:262–272

    Google Scholar 

  40. Sehhati M, Mehridehnavi S, Rabbani H, Pourhossien M (2015) Stable gene signature selection for prediction of breast cancer recurrence using joint mutual information. IEEE/ACM Trans Comput Biol Bioinf 12:1440–1447

    Google Scholar 

  41. Guyon J, Weston S, Barnhill V (2002) Vapnik, Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    MATH  Google Scholar 

  42. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Google Scholar 

  43. Mundra PA, Rajapakse JC (2010) SVM-RFE with MRMR filter for gene selection. IEEE Trans Nanobiosci 9:31–37

    Google Scholar 

  44. Mitra P, Murthy CA, Pal SK (2012) Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal Mach Intell 24:301–312

    Google Scholar 

  45. Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M, Zhang C, Tran N, Fan H, Retzlaff K, Bittner A, Raponi M (2009) Characterization of global microRNA expression reveals oncogenic potential of mir-145 in metastatic colorectal cancer. BMC Cancer 9:1–17

    Google Scholar 

  46. Leidinger P et al (2010) High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 10:1–11

    Google Scholar 

  47. Kundu S (2016) Granular model for social networks, target selection and fuzzy-rough community detection, Ph.D. Dissertation, Jadavpur University, Kolkata, India

  48. Kundu S, Pal SK (2015) FGSN: fuzzy granular social networks—model and applications. Inf Sci 314:100–117

    Google Scholar 

  49. Kundu S, Pal SK (2015) Fuzzy-rough community in social networks. Pattern Recognit Lett 67(2):145–152

    Google Scholar 

  50. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    ADS  MathSciNet  MATH  Google Scholar 

  51. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133

    ADS  Google Scholar 

  52. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    ADS  Google Scholar 

  53. Boorman SA, White HC (1976) Social structure from multiple networks. II. Role structures social structure from multiple networks. Am J Sociol 81:1384–1446

    Google Scholar 

  54. Davis GB, Carley KM (2008) Clearing the FOG: fuzzy, overlapping groups for social networks. Soc Netw 30:201–212

    Google Scholar 

  55. Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:1–15

    Google Scholar 

  56. Chattopadhyay S, Murthy CA, Pal SK (2014) Fitting truncated geometric distributions in large scale real world networks. Theoret Comput Sci 551:22–28

    MathSciNet  MATH  Google Scholar 

  57. Malliarosa FD, Vazirgiannis M (2013) Clustering and community detection in directed networks: a survey. Phys Rep 533:95–142

    ADS  MathSciNet  MATH  Google Scholar 

  58. Weiss RS, Jacobson E (1955) A method for the analysis of the structure of complex organizations. Am Sociol Assoc 20:661–668

    Google Scholar 

  59. Ganivada A, Dutta S, Pal SK (2011) Fuzzy rough granular neural networks, fuzzy granules and classification. Theor Comput Sci Part C 412(42):5834–5853

    MathSciNet  MATH  Google Scholar 

  60. Banerjee M, Mitra S, Pal SK (1998) Rough fuzzy MLP: knowledge encoding and classification. IEEE Trans Neural Netw 9(6):1203–1216

    Google Scholar 

  61. Ganivada A, Ray SS, Pal SK (2012) Fuzzy rough granular self-organizing map and fuzzy rough entropy. Theoret Comput Sci 466:37–63

    MathSciNet  MATH  Google Scholar 

  62. Ray SS, Ganivada A, Pal SK (2016) A granular self-organizing map for clustering and gene selection in microarray data. IEEE Trans Neural Netw Learn Syst 27(9):1890–1906

    MathSciNet  Google Scholar 

  63. Ganivada A, Ray SS, Pal SK (2013) Fuzzy rough sets, and a granular neural network for unsupervised feature selection. Neural Netw 48:91–108

    MATH  Google Scholar 

  64. Pal SK, Ray SS, Ganivada A (2017) Granular neural networks, pattern recognition and bioinformatics. Springer, Berlin

    Google Scholar 

  65. Zhang YQ, Jin B, Tang Y (2008) Granular neural networks with evolutionary interval learning. IEEE Trans Fuzzy Syst 16:309–319

    Google Scholar 

  66. Pal SK, Dasgupta B, Mitra P (2004) Rough self organizing map. Appl Intel 21:289–299

    MATH  Google Scholar 

  67. Yeung DS, Chen D, Tsang ECC, Lee JWT, Xizhao W (2005) On the generalization of fuzzy rough sets. IEEE Trans Fuzzy Syst 13:343–361

    Google Scholar 

  68. Banerjee M, Pal SK (1996) Roughness of a fuzzy set. Inf Sci 93:235–246

    MathSciNet  MATH  Google Scholar 

  69. Pal SK, Meher SK, Skowron A (2015) Data science, big data and granular mining. Pattern Recognit Lett 67(2):109–112

    Google Scholar 

  70. Zadeh LA (2001) A new direction in AI: toward a computational theory of perceptions. AI Magazine 22:73–84

    MATH  Google Scholar 

  71. Pal SK, Banerjee R (2013) Context granularization and subjective-information quantification. Theoret Comput Sci 448:2–14

    MATH  Google Scholar 

  72. Zadeh LA (2011) A note on Z-numbers. Inf Sci 18(14):2923–2932

    MATH  Google Scholar 

  73. Banerjee R, Pal SK (2015) Z*-numbers: augmented Z-numbers for machine-subjectivity representation. Inf Sci 323:143–178

    MathSciNet  Google Scholar 

  74. Banerjee R, Pal SK (2017) A computational model for the endogenous arousal of thoughts through Z*-numbers. Inf Sci 405:227–258

    Google Scholar 

  75. Bhoumik D (2018) Granulated deep learning: application in video tracking and object recognition, M. Tech. (CSE) Dissertation, Department of Computer Science and Engineering, University of Calcutta, India

Download references

Acknowledgements

The author acknowledges the DAE Raja Ramanna Fellowship and Sir J.C. Bose Fellowship of the Govt. of India. A part of the work was done while he held an INSA Distinguished Professorship Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S.K. Granular Mining and Big Data Analytics: Rough Models and Challenges. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90, 193–208 (2020). https://doi.org/10.1007/s40010-018-0578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0578-3

Keywords

Navigation