Skip to main content

Advertisement

Log in

Habitat complexity drives the turnover and nestedness patterns in a periphytic algae community

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Habitat complexity drives aquatic community attributes, including the beta diversity components. We tested the hypothesis that community diversity, richness and density are higher on complex artificial substrates than on simple ones. Additionally, we hypothesised that the species occurrence would change from the simplest substrates to the more complex ones because complex habitats provide more niches and methods of exploiting environmental resources, thereby supporting larger numbers of organisms. We expected that the periphytic community would present a nestedness pattern when considering the quantitative index and turnover for the qualitative index. The effect of habitat complexity on the beta diversity was mediated by the relative species abundances. The periphytic algae density was higher on the complex substrates, but contrary to our expectations, the species richness and diversity did not increase on the complex substrates. Based on our findings, we suggest that habitat complexity can play a crucial role in structuring beta diversity patterns. However, we highlight that the responses of species turnover and nestedness to the variation in habitat complexity contrasted with the abundance and species occurrence approach. Additionally, we suggest that the species richness patterns in the periphytic community are independent of increases in the number of individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agostinho AA, Thomaz SM, Gomes LC (2004) Threats for biodiversity in the floodplain of the upper Paraná River: effects of hydrological regulation by dams. Ecohydrol Hydrobiol 3:255–268

    Google Scholar 

  • Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters, 2nd edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Anderson MJ, Ellingsen KE, Mcardle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56:485–488

    Article  Google Scholar 

  • Bergey EA (1999) Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnol Oceanogr 44:1522–1529

    Article  Google Scholar 

  • Bicudo DC (1990) Considerações sobre metodologias de contagem de algas do perifíton. Acta Limnol Bras 3:459–475

    Google Scholar 

  • Bicudo CEM, Menezes M (2006) Gêneros de algas de águas continentais do Brasil: chaves para identificação e descrições, 2nd edn. Rima, São Carlos

    Google Scholar 

  • Biolo S, Rodrigues L (2013) Comparison of the structure of the periphytic community in distinct substrates from a neotropical floodplain. Int Res J Plant Sci 4:64–75

    Google Scholar 

  • Biolo S, Algarte VM, Rodrigues L (2015) Composition and taxonomic similarity of the periphytic algal community in different natural substrates in a neotropical floodplain. Afr J Plant Sci 9:17–24

    Article  Google Scholar 

  • Boeken B, Shachak M (1998) The dynamics of abundance and incidence of annual plant species during colonization in a desert. Ecography 21:63–73

    Article  Google Scholar 

  • Casartelli MR, Ferragut C (2018) The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization. Hydrobiologia 807:233–246

    Article  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B Biol Sci 366:2351–2363

    Article  Google Scholar 

  • Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in a-diversity. Ecosphere 2:1–11

    Article  Google Scholar 

  • Clifford HF, Casey RJ, Saffran KA (1992) Shortterm colonization of rough and smooth tiles by benthic macroinvertebrates and algae (chlorophyll a) in 2 streams. J N Am Benthol Soc 11:304–315

    Article  Google Scholar 

  • Delariva RL, Agostinho AA, Nakatani K, Baumgartner G (1994) Ichthyofauna associated to aquatic macrophytes in the upper Paraná River floodplain. Revista UNIMAR 16:41–60

    Google Scholar 

  • Dibble ED, Thomaz SM (2009) Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. J Freshw Ecol 24:93–102

    Article  Google Scholar 

  • Dibble ED, Killgore KJ, Dick GO (1996) Measurement of plant architecture in seven aquatic plants. J Freshw Ecol 11:311–318

    Article  Google Scholar 

  • Downes BJ, Lake PS, Schreiber ESG, Glaister A (2000) Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123:569–581

    Article  CAS  PubMed  Google Scholar 

  • Dunck B, Junqueira MG, Bichoff A, Silva MV, Barbosa AP, Paula ACM, Zanco BF, Moresco GA, Iatskiu P, Bortolini JC, Souza YR, Train S, Rodrigues LC, Jati S, Rodrigues L (2018) Periphytic and planktonic algae records from the upper Paraná river fl oodplain, Brazil: an update. Hoehnea 45:560–590

    Article  Google Scholar 

  • Fernandes UL, Oliveira ECC, Lacerda SR (2016) Role of macrophyte life forms in driving periphytic microalgal assemblages in a Brazilian reservoir. J Limnol 75:44–51

    Google Scholar 

  • Ferreiro N, Giorgi A, Feijoó C (2014) Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquat Ecol 47:389–401

    Article  Google Scholar 

  • Guille A (1970) Benthic bionomy of continental shelf of the French Catalane Coast. II. Benthic communities of the macrofauna. 21:149–280

  • Hawkins BA, Pausas JG (2004) Does plant richness influence animal richness? The mammals of Catalonia (NE Spain). Divers Distrib 10:247–252

    Article  Google Scholar 

  • Heino J, Melo AS, Bini LM (2015) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235

    Article  Google Scholar 

  • Jelinek HD, Cornforth D, Weymouth L (2003) FracTopv.0.3b. https://seal.tst.adfa.edu.au/~s3165516/Fractop

  • Johnson DW (2007) Habitat complexity modifies post-settlement mortality and recruitment dynamics of a marine fish. Ecology 88:1716–1725

    Article  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17

    Article  Google Scholar 

  • Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334

    Article  Google Scholar 

  • Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial and scale. J Anim Ecol 70:966–979

    Article  Google Scholar 

  • Lobo EA, Callegaro VLM, Hermany G, Bes D, Wetzel CA, Oliveira MA (2004) Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnol Bras 16:25–40

    Google Scholar 

  • Matias MG, Underwood AJ, Hochuli DF, Coleman RA (2010) Independent effects of patch size and structural complexity on diversity of benthic invertebrates. Ecology 91:1908–1915

    Article  PubMed  Google Scholar 

  • McAbendroth L, Ramsay PM, Foggo A, Rundl SD, Bilton DT (2005) Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111:279–290

    Article  Google Scholar 

  • Moreira-Filho H, Valente-Moreira IM (1981) Avaliação taxonômica e ecológica das diatomáceas (Bacillariophyceae) epífitas em algas pluricelulares obtidas nos litorais dos estados do Paraná, Santa Catarina e São Paulo. Boletim do Museu Botânico Municipal 47:1–17

    Google Scholar 

  • Mormul RP, Thomaz SM, Takeda AM, Behrend RD (2011) Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica 43:738–745

    Article  Google Scholar 

  • Moschini-Carlos V (1999) Importância, estrutura e dinâmica da comunidade perifítica nos ecossistemas aquáticos continentais. In: Pompêo MLM (eds) Perspectivas na Limnologia Brasileira. Gráfica e Editora União, São Luis

  • Murdock JN, Dodds WK (2007) Linking benthic algal biomass to stream substratum topography. J Phycol 43:449–460

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-7. https://CRAN.R-project.org/package=vegan.

  • Padial AA, Thomaz SM, Agostinho AA (2009) Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624:161–170

    Article  Google Scholar 

  • Paillisson JM, Reeber S, Carpentier A, Marion L (2006) Plant-water regime management in a wetland: consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias hybridus. Biodivers Conserv 15:3469–3480

    Article  Google Scholar 

  • Patrick R, Hohn MH, Wallace JH (1954) A new method for determining the pattern of the diatom flora. Notulae Naturae 259:1–9

    Google Scholar 

  • Petsch D, Schneck F, Melo AS (2016) Substratum simplification reduces beta diversity of stream algal communities. Freshw Biol 62:205–213

    Article  CAS  Google Scholar 

  • Pierre JIS, Kovalenko KE (2014) Effect of habitat complexity attributes on species richness. Ecosphere 5:1–10

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Raizer J, Amaral MEC (2001) Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages? J Arachnol 29:227–237

    Article  Google Scholar 

  • Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz J Biol 69:717–725

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Bicudo DC (2001) Similarity among periphyton algal communities in a lentic-lotic gradient of the upper Paraná river floodplain, Brazil. Revista Brasileira de Botânica 24:235–248

    Google Scholar 

  • Rodrigues L, Bicudo DC, Moschini-Carlos V (2003) O papel do perifíton em áreas alagáveis e nos diagnósticos ambientais. In: Thomaz SM, Bini LM (eds) Ecologia e manejo de macrófitas aquáticas.EDUEM, Maringá

  • Ros J (1979) Práticas de ecologia. Omega, Barcelona

    Google Scholar 

  • Round FE (1965) The biology of the algae. Edward Arnold (Publishers) Ltd, London

    Google Scholar 

  • Schneck F, Schwarzbold A, Melo AS (2011) Substrate roughness affects stream benthic algal diversity assemblage composition, and nestedness. N Am Benthol Soc 30:1042–1056

    Article  Google Scholar 

  • Simonsen R (1974) The diatom plankton of the Indian Ocean Expedition of R/V-Meteor, Meteor Forschungsergbnisse. Reihe D-Biologie. pp 191–266

  • Soininen J (2008) The ecological characteristics of idiosyncratic and nested diatoms. Protist 159:65–72

    Article  PubMed  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  Google Scholar 

  • Stevaux JC (1994) Upper Paraná River (Brazil): geomorphology, sedimentology and paleoclimatology. Quat Int 21:143–161

    Article  Google Scholar 

  • Stevaux JC, Souza IA (2004) Floodplain construction in an anastomosed river. Quat Int 14:55–66

    Article  Google Scholar 

  • Stewart T, Shumaker T, Radzio T (2003) Linear and nonlinear effects of habitat structure on composition and abundance in the macroinvertebrate community of a large river. Am Midl Nat 149:293–305

    Article  Google Scholar 

  • Taniguchi H, Nakano S, Tokeshi M (2003) Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshw Biol 48:718–728

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbo Rger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages composition and biodiversity. Acta Limnol Bras 22:218–236

    Article  Google Scholar 

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53:358–367

    Google Scholar 

  • Tokeshi M, Arakaki S (2012) Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685:27–47

    Article  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Article  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying betadiversity and related phenomena. Ecography 33:23–45

    Article  Google Scholar 

  • Utermӧhl H (1958) Zur Vervollkommnung der quantitative phytoplankton methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–39

    Google Scholar 

  • Vadeboncoeur Y, Steinman AD (2002) Periphyton function in lake ecosystems. Sci World J 2:1–20

    Article  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater habitat of algae. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America: ecology and classification. Elsevier, San Diego

Download references

Acknowledgements

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the provision of scholarships and funds and the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) for technical and logistical support. ERC thanks Fundação Araucária and Itaipu Binacional for providing funds. We emphasize that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolli Cristina Osório.

Additional information

Handling Editor: Jeremy Piggott.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Periphytic algae species colonising simple and complex structures. Proportional recorded abundance between simple (light blue bars) and complex (dark blue bars) structures are shown, as well as proportional recorded frequency (light and dark red). The total abundance of species recorded in simple (light purple bars) and complex (dark purple bars) structures is also shown. “*” indicates few occasions where abundance in simple structures overcome abundance in complex structures. “A” frequency-dominant species exclusive to each level of structural complexity; “B” shows frequency-dominant but not exclusive species to each level of structural complexity; “C” shows more frequency-even species in levels of structural complexity. The class abbreviation: Bacillariophyceae (Baci), Chlorophyceae (Chlo), Craspedomonadophyceae (Cras), Cyanophyceae (Cyan), Euglenophyceae (Eugl), Oeodogoniophyceae (Oeod), Xanthophyceae (Xant) and Zygnemaphyceae (Zygn).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osório, N.C., Cunha, E.R., Tramonte, R.P. et al. Habitat complexity drives the turnover and nestedness patterns in a periphytic algae community. Limnology 20, 297–307 (2019). https://doi.org/10.1007/s10201-019-00578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-019-00578-y

Keywords

Navigation