Skip to main content
Log in

Dimethyl Ether Conversion to Light Olefins on Zeolite Catalysts: Effect of MFI-Type Zeolite Nature and SiO2/Al2O3 Molar Ratio on Catalyst Efficiency

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The physicochemical and catalytic properties of magnesium-containing zeolite catalysts based on MFI-type zeolites (ZSM-5 and CBV) were compared. The presence of larger mesopores volume in MgCBV was found to decrease selectivity towards light olefins. In order to improve the catalytic properties of MgCBV, the effect of SiO2/Al2O3 molar ratio of CBV (SiO2/Al2O3 = 30, 55, 80 and 300) on its physicochemical and catalytic properties in the reaction of the dimethyl ether (DME) into light olefins was studied. Increasing SiO2/Al2O3 molar ratio from 30 to 80, was shown not change practically the DME conversion and olefin selectivity, but under a SiO2/Al2O3 molar ratio of 300, DME conversion significantly reduces, olefin selectivity increases, while the ethylene/propylene ratio decreases twice. By changing residence time, DME conversion increases under high total light olefins selectivity, while the ethylene/propylene ratio raises with increasing residence time.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park JW, Seo G (2009) Appl Catal A Gen 356:180–188. https://doi.org/10.1016/j.apcata.2009.01.001

    Article  CAS  Google Scholar 

  2. Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

  3. Chen W-H, Lin B-J, Lee H-M, Huang M-H (2012) Appl Energy 98:92–101. https://doi.org/10.1016/j.apenergy.2012.02.082

    Article  CAS  Google Scholar 

  4. M Hack, U Koss, P Konig, M Rothaemel, H-D Holtmann (2006) US Patent US7015369

  5. Kolesnichenko NV, Goryainova TI, Biryukova EN, Yashina OV, Khadzhiev SN (2011) Pet Chem 51:55–60. https://doi.org/10.1134/S0965544111010105

    Article  CAS  Google Scholar 

  6. Brown DM, Bhatt BL, Hsiung TH, Lewnard JJ, Waller FJ (1991) Catal Today 8:279–304. https://doi.org/10.1016/0920-5861(91)80055-E

    Article  CAS  Google Scholar 

  7. N Chikamatsu, K Honda, A Okita, J Takahashi, K Oyama, M Nakamura (2011) 7th Asian DME conference

  8. Cai G, Liu Z, Shi R, Changqing H, Yang L, Sun C, Chang Y (1995) Appl Catal A Gen 125:29–38. https://doi.org/10.1016/0926-860X(94)00291-6

    Article  CAS  Google Scholar 

  9. M Inomata, A Higashi, Y Makino, Y Mashiko (2005) US Patent US6852897 B2

  10. Kolesnichenko NV, Yashina OV, Markova NA, Biryukova EN, Goryainova TI, Kulumbegov RV, Khadzhiev SN, Kitaev LE, Yushchenko VV (2009) Pet Chem 49:42–46. https://doi.org/10.1134/S0965544109010083

    Article  Google Scholar 

  11. Sardesai A, Lee S (2003) Energy Sources 27:489–500. https://doi.org/10.1080/009083190518970

    Article  CAS  Google Scholar 

  12. Omata K, Yamazaki Y, Watanabe Y, Kodama K, Yamada M (2009) Ind Eng Chem Res 48:6256–6261. https://doi.org/10.1021/ie801757p

    Article  CAS  Google Scholar 

  13. Zhu W, Li X, Kaneko H, Fujimoto K (2008) Catal Lett 120:95–99. https://doi.org/10.1007/s10562-007-9254-y

    Article  CAS  Google Scholar 

  14. H Ito, K Ooyama, S Yamada, M Kume, N Chikamatsu (2007) US Patent US20070032379A1

  15. Zhao T-S, Takemoto T, Tsubaki N (2006) Catal Commun 7:647–650. https://doi.org/10.1016/j.catcom.2005.11.009

    Article  CAS  Google Scholar 

  16. Jian-ming M, Zhang Q, Xie H, Pan J, Tan Y, Han Y (2011) J Fuel Chem Technol 39:42–46. https://doi.org/10.1016/S1872-5813(11)60008-X

    Article  Google Scholar 

  17. Zhu Q, Kondo JN, Ohnuma R, Kubota Y, Yamaguchi M, Tatsumi T (2008) Microporous Mesoporous Mater 112:153–161. https://doi.org/10.1016/j.micromeso.2007.09.026

    Article  CAS  Google Scholar 

  18. Shirazi L, Jamshidi E, Ghasemi M (2008) Cryst Res Technol 43:1300–1306. https://doi.org/10.1002/crat.200800149

    Article  CAS  Google Scholar 

  19. Sang S, Chang F, Liu Z, He C, He Y, Xu L (2004) Catal Today 3:729–734. https://doi.org/10.1016/j.cattod.2004.06.091

    Article  CAS  Google Scholar 

  20. Kolesnichenko NV, Yashina OV, Ezhova NN, Bondarenko GN, Khadzhiev SN (2018) Russ J Phys Chem 92:118–123. https://doi.org/10.1134/S0036024418010120

    Article  CAS  Google Scholar 

  21. Kolesnichenko NV, Pavlov VS, Stashenko AN, Yashina OV, Ezhova NN, Konnov SV, Khadzhiev SN (2018) React Kinet Mech Cat 124:825–838. https://doi.org/10.1007/s11144-018-1368-2

    Article  CAS  Google Scholar 

  22. Rodionov AS, Shirobokova GN, Bondarenko GN, Pavlyuk YV, Kolesnichenko NV, Batova TI, Khivrich EN, Khadzhiev SN (2013) Pet Chem 53:5–316. https://doi.org/10.7868/S0028242113050080

    Article  Google Scholar 

  23. Goryainova TI, Biryukova EN, Kolesnichenko NV, Khadzhiev SN (2011) Pet Chem 51:181–185. https://doi.org/10.1134/S096554411101004X

    Article  CAS  Google Scholar 

  24. Wang Y, Chen S-L, Gao Y-L, Cao Y-Q, Zhang Q, Chang W-K (2017) ACS Catal 7:5572–5584. https://doi.org/10.1021/acscatal.7b01285

    Article  CAS  Google Scholar 

  25. Khadzhiev SN, Magomedova MV, Peresypkina EG (2014) Pet Chem 54:245–269. https://doi.org/10.1134/S0965544114040057

    Article  CAS  Google Scholar 

  26. Shang Y, Wang W, Zhai Y, Song Y, Zhao X, Ma T, Wei J, Gong Y (2019) Microporous Mesoporous Mater 276:173–182. https://doi.org/10.1016/j.micromeso.2018.09.038

    Article  CAS  Google Scholar 

  27. Semelsberger TA, Ott KC, Borup RL, Greene HL (2005) Appl Catal B Environ 61:281–287. https://doi.org/10.1016/j.apcatb.2005.05.014

    Article  CAS  Google Scholar 

  28. Badmaev SD, Belyaev VD, Volkova GG, Sobyanin VA (2007) React Kinet Catal Lett 90:197–204. https://doi.org/10.1007/s11144-007-5081-9

    Article  CAS  Google Scholar 

  29. Khanmohammadi M, Amani S, Bagheri Garmarudi A, Niaei A (2016) Chin J Catal 37:325–339. https://doi.org/10.1016/S1872-2067(15)61031-2

    Article  CAS  Google Scholar 

  30. Kojima M, Rautenbach MW, O’Connor CT (1988) J Catal 112:495–504. https://doi.org/10.1016/0021-9517(88)90165-0

    Article  CAS  Google Scholar 

  31. Tamura M, Shimizu KI, Satsuma A (2012) Appl Catal A 433:135–145. https://doi.org/10.1016/j.apcata.2012.05.008

    Article  CAS  Google Scholar 

  32. Emeis CA (1993) J Catal 141:347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Batova.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obukhova, T.K., Batova, T.I., Kolesnikova, E.E. et al. Dimethyl Ether Conversion to Light Olefins on Zeolite Catalysts: Effect of MFI-Type Zeolite Nature and SiO2/Al2O3 Molar Ratio on Catalyst Efficiency. Catal Lett 150, 762–770 (2020). https://doi.org/10.1007/s10562-019-02980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02980-8

Keywords

Navigation