Skip to main content

Advertisement

Log in

Improving our conservation genetic toolkit: ddRAD-seq for SNPs in snow leopards

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Snow leopards (Panthera uncia) are an enigmatic, high-altitude species whose challenging habitat, low population densities and patchy distribution have presented challenges for scientists studying its biology, population structure, and genetics. Molecular scatology brings a new hope for conservation efforts by providing valuable insights about snow leopards, including their distribution, population densities, connectivity, habitat use, and population structure for assigning conservation units. However, traditional amplification of microsatellites from non-invasive sources of DNA are accompanied by significant genotyping errors due to low DNA yield and poor quality. These errors can lead to incorrect inferences in the number of individuals and estimates of genetic diversity. Next generation technologies have revolutionized the depth of information we can get from a species’ genome. Here we used double digest restriction-site associated DNA sequencing (ddRAD-seq), a well-established technique for studying non-model organisms, to develop a reference sequence library for snow leopards using blood samples from five Mongolian individuals. Our final data set reveals 4504 loci with a median size range of 221 bp. We identified 697 SNPs and low nucleotide diversity (0.00032) within these loci. However, the probability that two random individuals will share identical genotypes is about 10−168. We developed probes for DNA capture using this sequence library which can now be used for genotyping individuals from scat samples. Genetic data from ddRAD-seq will be invaluable for conducting population and landscape scale studies that can inform snow leopard conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrews KR, Adams JR, Cassirer EF, Plowright RK, Gardner C, Dwire M, Hohenlohe PA, Waits LP (2018) A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RAD seq data. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12910

    Article  PubMed  PubMed Central  Google Scholar 

  • Aryal A, Brunton D, Ji W, Karmacharya D, McCarthy T, Bencini R, Raubenheimer D (2014) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. J Mammal 95(4):871–881

    Article  Google Scholar 

  • Ba H, Jia B, Wang G, Yang Y, Kedem G, Li C (2017) Genome-wide SNP discovery and analysis of genetic diversity in farmed sika deer (Cervus nippon) in northeast China using double-digest restriction site-associated DNA sequencing. G3: Genes Genomes Genet 7(9):3169–3176

    Article  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Caragiulo A, Kang Y, Rabinowitz S, Dias-Freedman I, Loss S, Zhou XW, Bao WD, Amato G (2015) Presence of the endangered amur tiger Panthera tigris altaica in Jilin Province, China, detected using non-invasive genetic techniques. Oryx 49(4):632–635

    Article  Google Scholar 

  • Caragiulo A, Amato G, Weckworth B (2016) Conservation genetics of snow leopards. In: Nyhus PJ, McCarthy T, Mallon D (eds) Snow leopards—biodiversity of the world: conservation from genes to landscapes. Elsevier Inc., London, pp 368–371

    Google Scholar 

  • DaCosta JM, Sorenson MD (2014) Amplification biases and consistent recovery of loci in a double-digest RAD-seq protocol. PLoS ONE 9(9):e106713

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Ernest H, Penedo M, May B, Syvanen M, Boyce W (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9:433–442

    Article  CAS  PubMed  Google Scholar 

  • Fox JL, Chundawat RS (2016) What is a Snow Leopard? Behavior and Ecology. In: Nyhus PJ, McCarthy T, Mallon D (eds) Snow Leopards – Biodiversity of the world: conservation from genes to landscapes. Elsevier Inc., London, pp 13–21

    Chapter  Google Scholar 

  • Janečka JE, Jackson R, Yuquang Z, Diqiang L, Munkhtsog B, Buckley-Beason V, Murphy WJ (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11(5):401–411

    Article  Google Scholar 

  • Janecka JE, Zhang Y, Li D, Munkhtsog B, Bayaraa M, Galsandorj N, Wangchuk TR, Karmacharya D, Li J, Lu Z, Uulu KZ, Gaur A, Kumar S, Kumar K, Hussain S, Muhammad G, Jevit M, Hacker C, Burger P, Wultsch C, Janecka MJ, Helgen K, Murphy WJ, Jackson R (2017) Range-wide snow leopard phylogeography supports three subspecies. J Hered 108(6):597–607

    Article  PubMed  Google Scholar 

  • Johansson Ö, Malmsten J, Mishra C, Lkhagvajav P, McCarthy T (2013) Reversible immobilization of free-ranging snow leopards (Panthera uncia) with a combination of medetomidine and tiletamine-zolazepam. J Wildl Dis 49(2):338–346

    Article  PubMed  Google Scholar 

  • Karmacharya DB, Thapa K, Shrestha R, Dhakal M, Janecka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Res Notes 4:516

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond Ser B 266:1–7

    Article  Google Scholar 

  • Lavretsky P, Dacosta JM, Hernández-Baños BE, Engilis A, Sorenson MD, Peters JL (2015) Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards. Mol Ecol 24(21):5364–5378

    Article  CAS  PubMed  Google Scholar 

  • McCarthy T, Mallon D, Sanderson EW, Zahler P, Fisher K (2016) Biogeography and status overview. In: Nyhus PJ, McCarthy T, Mallon D (eds) Snow leopards. Biodiversity of the world: conservation from genes to landscapes. Elsevier, London, pp 23–42

    Chapter  Google Scholar 

  • McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68(3):439–448

    Article  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol Appl 10(1):283–294

    Article  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Vyse E, Ward R, Strobeck C (1998) Variation in genetic diversity across the range of North American brown bears. Conserv Biol 12:418–429

    Article  Google Scholar 

  • Perry GH, Marioni JC, Melsted P, Gilad Y (2010) Genomic-scale capture and sequencing of endogenous DNA from feces. Mol Ecol 19(24):5332–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JL, Lavretsky P, DaCosta JM, Bielefeld RR, Feddersen JC, Sorenson MD (2016) Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biol Conserv 203:272–281

    Article  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5):e37135. https://doi.org/10.1371/journal.pone.0037135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ (2014) PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol 31(7):1929–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JZ, Tollit D, Thompson P, Amos W (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex, and individual identity to seal faeces. Mol Ecol 6:225–234

    Article  CAS  PubMed  Google Scholar 

  • Valiëre N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Waits J, Leberg P (2000) Biases associated with population estimation using molecular tagging. Anim Conserv 3:191–199

    Article  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69(4):1419–1433

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol ecol 10(1):249–256

    Article  CAS  PubMed  Google Scholar 

  • Waits LP, BUCKLEY-BEASON VA, Johnson WE, Onorato D, McCarthy TOM (2007) A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia). Mol Ecol Notes 7(2):311–314

    Article  CAS  Google Scholar 

Download references

Funding

The funding was provided by Panthera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Janjua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjua, S., Peters, J.L., Weckworth, B. et al. Improving our conservation genetic toolkit: ddRAD-seq for SNPs in snow leopards. Conservation Genet Resour 12, 257–261 (2020). https://doi.org/10.1007/s12686-019-01082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-019-01082-2

Keywords

Navigation