Skip to main content
Log in

Fabrication and Characterization of Metal-High Entropy Alloy Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The scope of the present study is focused on high-entropy alloy (HEA), a new type of alloy system-reinforced aluminium metal matrix composite (AMMC) development. The novel metal–metal composite is fabricated through powder metallurgy by reinforcing prepared AlCoCrCuFe HEA particles with aluminium. Headed for identifying the effect of HEA on aluminium, weight percentage of HEA is varied from 0 to 15% with an equal interval of 3%. By using X-ray diffractometer, phase constituents of HEA and Al base material are analysed besides the fact that the scanning electron microscope is utilized for morphology analysis of HEA particles and AMMC. Density of the aluminium increases gradually with the increase in HEA content due to higher density of reinforcements, and maximum micro-hardness of 71.3 HV is attained for 15% HEA reinforcement addition which is 37.6 HV for unreinforced aluminium. Among the various predictive methodologies, the density and hardness of Al–AlCoCrCuFe metal–metal composite are found close to the values predicted by the Reuss and Voigt model, respectively. Decrease in wear rate was found for aluminium MMC with the increase in HEA reinforcement addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. K.P. Kumar, M.G. Krishna, J.B. Rao, N. Bhargava, Fabrication and characterization of 2024 aluminium–high entropy alloy composites. J. Alloys Compd. 640, 421–427 (2015)

    Article  Google Scholar 

  2. B. Stojanović, M. Babić, S. Veličković, J. Blagojević, Tribological behavior of aluminum hybrid composites studied by application of factorial techniques. Tribol. Trans. 59, 522–529 (2016)

    Article  Google Scholar 

  3. S. Suresh, N.S.V. Moorthi, S.C. Vettivel, N. Selvakumar, G.R. Jinu, Effect of graphite addition on mechanical behavior of Al6061/TiB2 hybrid composite using acoustic emission. Mater. Sci. Eng. A 612, 16–27 (2014)

    Article  CAS  Google Scholar 

  4. S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty, J. Eckert, Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 57, 2029–2039 (2009)

    Article  CAS  Google Scholar 

  5. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E.P. George, Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348–353 (2015)

    Article  CAS  Google Scholar 

  6. G.M. Karthik, S. Panikar, G.D.J. Ram, R.S. Kottada, Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles. Mater. Sci. Eng. A 679, 193–203 (2017)

    Article  CAS  Google Scholar 

  7. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19, 349–362 (2016)

    Article  CAS  Google Scholar 

  8. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61–66 (2014)

    Article  CAS  Google Scholar 

  9. J. Chen, P. Niu, T. Wei, L. Hao, Y. Liu, X. Wang, Y. Peng, Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630–634 (2015)

    Article  CAS  Google Scholar 

  10. A. Bokulich, Maxwell, Helmholtz, and the unreasonable effectiveness of the method of physical analogy. Stud. Hist. Philos. Sci. Part A 50, 28–37 (2015)

    Article  Google Scholar 

  11. H.J. Edrees, A.C. Smith, A. Hendry, A rule-of-mixtures model for sintering of particle-reinforced ceramic-matrix composites. J. Eur. Ceram. Soc. 18, 275–278 (1998)

    Article  CAS  Google Scholar 

  12. I. Jäger, P. Fratzl, Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000)

    Article  Google Scholar 

  13. H.S. Kim, On the rule of mixtures for the hardness of particle reinforced composites. Mater. Sci. Eng., A 289, 30–33 (2000)

    Article  Google Scholar 

  14. G.R. Liu, A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos. Struct. 40, 313–322 (1997)

    Article  Google Scholar 

  15. Y. Prawoto, J.R.P. Djuansjah, N.B. Shaffiar, Re-visiting the ‘rule of mixture’used in materials with multiple constituting phases: a technical note on morphological considerations in austenite case study. Comput. Mater. Sci. 65, 528–535 (2012)

    Article  CAS  Google Scholar 

  16. F. Assous, P. Degond, E. Heintze, P.-A. Raviart, J. Segré, On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)

    Article  Google Scholar 

  17. F. Hermeline, A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes. C. R. Math. 339, 893–898 (2004)

    Article  Google Scholar 

  18. V.I. Kushch, I. Sevostianov, Maxwell homogenization scheme as a rigorous method of micromechanics: application to effective conductivity of a composite with spheroidal particles. Int. J. Eng. Sci. 98, 36–50 (2016)

    Article  Google Scholar 

  19. F. Assous, P. Degond, J. Segré, Numerical approximation of the Maxwell equations in inhomogeneous media by aP1Conforming finite element method. J. Comput. Phys. 128, 363–380 (1996)

    Article  Google Scholar 

  20. V.A. Rukavishnikov, A.O. Mosolapov, New numerical method for solving time-harmonic Maxwell equations with strong singularity. J. Comput. Phys. 231, 2438–2448 (2012)

    Article  Google Scholar 

  21. A. Yefet, E. Turkel, Fourth order compact implicit method for the Maxwell equations with discontinuous coefficients. Appl. Numer. Math. 33, 125–134 (2000)

    Article  Google Scholar 

  22. S. Praveen, B.S. Murty, R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng. A 534, 83–89 (2012)

    Article  CAS  Google Scholar 

  23. K.S. Prakash, R.S. Moorthy, P.M. Gopal, V. Kavimani, Effect of reinforcement, compact pressure and hard ceramic coating on aluminium rock dust composite performance. Int. J. Refract. Met. Hard Mater. 54, 223–229 (2016). https://doi.org/10.1016/j.ijrmhm.2015.07.037

    Article  CAS  Google Scholar 

  24. K.S. Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J. Magnes. Alloy. 4, 197–206 (2016). https://doi.org/10.1016/j.jma.2016.08.001

    Article  CAS  Google Scholar 

  25. P.M. Gopal, K.S. Prakash, S. Nagaraja, N.K. Aravinth, Effect of weight fraction and particle size of CRT glass on the tribological behaviour of Mg–CRT–BN hybrid composites. Tribol. Int. 116, 338–350 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Gopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soorya Prakash, K., Gopal, P.M., Purusothaman, M. et al. Fabrication and Characterization of Metal-High Entropy Alloy Composites. Inter Metalcast 14, 547–555 (2020). https://doi.org/10.1007/s40962-019-00383-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-019-00383-4

Keywords

Navigation