Skip to main content
Log in

Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15—Bi4Ti3O12 inter-growth ceramics

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Er3+-doped SrBi4Ti4O15-Bi4Ti3O12 (SBT-BIT-xEr3+, x = 0.00, 0.05, 0.10, 0.15 and 0.20) inter-growth ceramics were synthesized by the solid-state reaction method. Structural, electrical and up-conversion properties of SBT-BIT-xEr3+ were investigated. All samples showed a single phase of the orthorhombic structure. Raman spectroscopy indicated that the Er3+ substitution for Bi3+ at A sites of the pseudo-perovskite layer increases the lattice distortion of SBT-BIT-xEr3+ ceramics. The substitution of Bi3+ by Er3+ leads to a decrease of dielectric loss tanδ and an increase of conductivity activation energy. Piezoelectric constant d33 was slightly improved, but dielectric constant was decreased with the Er3 + doping. The SBT-BIT-xEr3+ ceramic with x = 0.15 exhibits the optimized electrical behavior (d33 ~17 pC/N, tanδ ~0.83%). Moreover, two bright green (532 and 548 nm) and one red (670 nm) emission bands were observed under the 980 nm excitation. Optimized emission intensity was also obtained when x = 0.15 for the SBT-BIT-xEr3+ ceramic. Therefore, this kind of ceramics ought to be promising candidates for multifunctional optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park B H, Kang B S, Bu S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682–684

    Article  Google Scholar 

  2. Wang C M, Wang J F, Mao C, et al. Enhanced dielectric and piezoelectric properties of Aurivillius-type potassium bismuth titanate ceramics by cerium modification. Journal of the American Ceramic Society, 2008, 91(9): 3094–3097

    Article  Google Scholar 

  3. Wei T, Zhao C Z, Li C P, et al. Photoluminescence and ferroelectric properties in Eu doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectric ceramics. Journal of Alloys and Compounds, 2013, 577(45): 728–733

    Article  Google Scholar 

  4. Maeder M D, Damjanovic D, Setter N. Lead free piezoelectric materials. Journal of Electroceramics, 2004, 13(1–3): 385–392

    Article  Google Scholar 

  5. Peng Z H, Zeng X X, Yang X, et al. Dielectric relaxation behavior of Mn-modified Ca0.9Pr0.05[]0.05Bi2Nb2O9-based high temperature piezoceramics. Ceramics International, 2017, 43(1): 1249–1255

    Article  Google Scholar 

  6. Long C, Chang Q, Wu Y, et al. New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5 – xTi4O15: crystal structures, electrical properties and conduction behaviors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(34): 8852–8864

    Article  Google Scholar 

  7. Yi Z G, Li Y X, Zeng J T, et al. Lanthanum distribution and dielectric properties of intergrowth Bi5–xLaxTiNbWO15 ferroelectrics. Applied Physics Letters, 2005, 87(20): 202901

    Article  Google Scholar 

  8. Noguchi Y, Miyayama M, Kudo T. Ferroelectric properties of intergrowth Bi4Ti3O12–SrBi4Ti4O15 ceramics. Applied Physics Letters, 2000, 77(22): 3639–3641

    Article  Google Scholar 

  9. Gu S P, Wang W, He J H, et al. Ferroelectric, piezoelectric and dielectric properties of Nb modified Bi4Ti3O12–SrBi4Ti4O15 intergrowth. Integrated Ferroelectrics, 2007, 94(1): 56–63

    Article  Google Scholar 

  10. Parida G, Bera J. Effect of La-substitution on the structure, dielectric and ferroelectric properties of Nb modified SrBi8Ti7O27 ceramics. Materials Research Bulletin, 2015, 68: 155–159

    Article  Google Scholar 

  11. Park B H, Hyun S J, Bu S D, et al. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Applied Physics Letters, 1999, 74(13): 1907–1909

    Article  Google Scholar 

  12. Jiang Y L, Jiang X P, Chen C, et al. Structural and electrical properties of La3+-doped Na0.5Bi4.5Ti4O15–Bi4Ti3O12 intergrowth high temperature piezoceramics. Ceramics International, 2017, 43(8): 6446–6452

    Article  Google Scholar 

  13. Sun H, Zhang Q, Wang X, et al. A new red-emitting material K0.5Na0.5NbO3: Eu3+ for white LEDs. Materials Research Bulletin, 2015, 64: 134–138

    Article  Google Scholar 

  14. Li X M, Guo H, Wei Y L, et al. Enhanced up-conversion in Er3+-doped transparent glass-ceramics containing NaYbF4 nanocrystals. Journal of Luminescence, 2014, 152(2): 168–171

    Article  Google Scholar 

  15. Cui R, Deng C, Gong X, et al. Photoluminescence properties of a green to red-emitting Eu3+, Tb3+ co-doped CaBi2Ta2O9 ferroelectrics. Journal of Electroceramics, 2014, 32(2–3): 215–219

    Article  Google Scholar 

  16. Lau C M, Xu X W, Kwok K W. Photoluminescence, ferroelectric, dielectric and piezoelectric properties of Er-doped BNT–BT multifunctional ceramics. Applied Surface Science, 2015, 336: 314–320

    Article  Google Scholar 

  17. Bokolia R, Thakur O P, Rai V K, et al. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12, ferroelectric ceramics. Ceramics International, 2015, 41(4): 6055–6066

    Article  Google Scholar 

  18. Peng D, Zou H, Xu C, et al. Er-doped BaBi4Ti4O15 multifunctional ferroelectrics: up-conversion photoluminescence, dielectric and ferroelectric properties. Journal of Alloys and Compounds, 2013, 552(9): 463–468

    Article  Google Scholar 

  19. Peng D, Zou H, Xu C, et al. Upconversion luminescence, ferroelectrics and piezoelectrics of Er-doped SrBi4Ti4O15. AIP Advances, 2012, 2(4): 042187

    Article  Google Scholar 

  20. Parida G, Bera J. Electrical properties of niobium doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. Ceramics International, 2014, 40(2): 3139–3144

    Article  Google Scholar 

  21. Yao Z, Chu R, Xu Z, et al. Enhanced electrical properties of (Li, Ce) co-doped Sr(Na0.5Bi0.5)Bi4Ti5O18 high temperature piezoceramics. RSC Advances, 2016, 6(40): 33387–33392

    Article  Google Scholar 

  22. Yu L, Hao J, Xu Z, et al. Strong red emission and enhanced ferroelectric properties in (Pr, Ce)-modified Na0.5Bi4.5Ti4O15 multifunctional ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27(11): 12216–12221

    Google Scholar 

  23. Chou X, Zhai J, Jiang H, et al. Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. Journal of Applied Physics, 2007, 102(8): 084106

    Article  Google Scholar 

  24. Peng D, Wang X, Xu C, et al. Bright upconversion emission, increased TC, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric oxides. Journal of the American Ceramic Society, 2013, 96(1): 184–190

    Article  Google Scholar 

  25. Zhu J, Chen X B, He J H, et al. Raman scattering investigations on lanthanum-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. Journal of Solid State Chemistry, 2005, 178(9): 2832–2837

    Article  Google Scholar 

  26. Wang W, Gu S P, Mao X Y, et al. Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12–SrBi4Ti4O15. Journal of Applied Physics, 2007, 102(2): 024102

    Article  Google Scholar 

  27. Jiang X, Jiang X, Chen C, et al. Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. Journal of the American Ceramic Society, 2016, 99(4): 1332–1339

    Article  Google Scholar 

  28. Kojima S, Imaizumi R, Hamazaki S, et al. Raman-scattering study of bismuth layer-structure ferroelectrics. Japanese Journal of Applied Physics Part 1, 1994, 33(9B): 5559–5564

    Google Scholar 

  29. Jiang Y L, Jiang X P, Chen C, et al. Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15–Bi4Ti3O12 inter-growth ferroelectric ceramics. Frontiers of Materials Science, 2017, 11(1): 51–58

    Article  Google Scholar 

  30. Shi K, Peng L, Li MJ, et al. Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2–xWxO9 ceramics. Journal of Alloys and Compounds, 2015, 653: 168–174

    Article  Google Scholar 

  31. Ezhilvalavan S, Xue J M, Wang J. Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics. Materials Chemistry and Physics, 2002, 75(1–3): 50–55

    Article  Google Scholar 

  32. Durán-Martín P, Castro A, Millán P, et al. Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9. Journal of Materials Research, 1998, 13(9): 2565–2571

    Article  Google Scholar 

  33. Wu Y, Limmer S J, Chou T P, et al. Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. Journal of Materials Science Letters, 2002, 21(12): 947–949

    Article  Google Scholar 

  34. Kumar S, Varma K B R. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. Journal of Physics D: Applied Physics, 2009, 42 (7): 075405

    Book  Google Scholar 

  35. Long C, Fan H. Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9. Dalton Transactions, 2012, 41(36): 11046–11054

    Article  Google Scholar 

  36. Rehman F, Jin H B, Li J B. Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na0.5Gd0.5Bi4Ti4O15 ceramics. RSC Advances, 2016, 6(41): 35102–35109

    Article  Google Scholar 

  37. Xu Q, Lanagan M T, Luo W, et al. Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3–BaTiO3 ceramics modified with NaNbO3. Journal of the European Ceramic Society, 2016, 36 (10): 2469–2477

    Google Scholar 

  38. Lau C M, Wu X, Kwok K W. Effects of vacancies on luminescence of Er-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics. Journal of Applied Physics, 2015, 118(3): 034107

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51562014, 51602135, 51862016, 51762024 and 61671224), the Natural Science Foundation of Jiangxi Province (20171BAB216012), and the Foundation of Jiangxi Provincial Education Department (GJJ170789, GJJ170794 and GJJ170804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Jiang, X., Chen, C. et al. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15—Bi4Ti3O12 inter-growth ceramics. Front. Mater. Sci. 13, 99–106 (2019). https://doi.org/10.1007/s11706-019-0454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0454-3

Keywords

Navigation