Skip to main content
Log in

A reference points and intuitionistic fuzzy dominance based particle swarm algorithm for multi/many-objective optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Intuitionistic Fuzzy Sets is one of the most influential extension and development of Zadeh’s fuzzy set theory. It has strong performance in dealing with uncertain information, while taking into account information on membership degree, non-membership degree and hesitation degree. In this paper, a new loose Pareto dominant relationship named intuitionistic fuzzy dominance is adopted to research multi/many-objective particle swarm optimization problems. Particle swarm optimization (PSO) with double search strategy is employed to update the population to enhance the exploitation and exploration capability of particle in the objective space, especially high-dimensional objective space. In addition, the uniformly distributed reference points are used to balance the convergence and diversity of the algorithm. The proposed algorithm has been compared with four recent multi-objective particle swarm optimization algorithms and four state-of-the-art many-objective evolutionary algorithms on 16 benchmark MOPs with 3, 5,8,10 and 15 objectives, respectively. The simulation results show that the proposed algorithm has better performance on most test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. 1. https://github.com/BIMK/PlatEMO

References

  1. Herrero JG, Berlanga A, Lopez JMM (2009) Effective evolutionary algorithms for many-specifications attainment: Application to air traffic control tracking filters. IEEE Trans Evol Comput 13(1):151–168. https://doi.org/10.1109/TEVC.2008.920677

    Article  Google Scholar 

  2. Sülflow A, Drechsler N, Drechsler R (2007) Robust multi-objective optimization in high dimensional spaces. Proc. Evol. Multi-Criter. Optim, Matsushima, pp 715–726. https://doi.org/10.1007/978-3-540-70928-2_54

    Book  Google Scholar 

  3. Sayyad AS, Menzies T, Ammar H (2013) On the value of user preferences in search-based software engineering: A case study in software product lines. In: Proc. 35th Int. Conf. Softw. Eng., San Francisco, CA, USA, pp. 492–501. https://doi.org/10.1109/ICSE.2013.6606595

  4. Colleo CC, Lamont GB et al (2002) Evolutionary algorithms for solving multiobjective problems. Springer. https://doi.org/10.1007/978-0-387-36797-2

  5. Zheng D, Gen M, Cheng R (1999) Multi-objective optimization using genetic algorithms. Engineering Valuation and Cost Analysis 2:303–310. https://doi.org/10.1016/j.ress.2005.11.018

    Article  Google Scholar 

  6. Liu Y, Gong D, Sun X et al (2017) Many-objective Evolutionary Optimization Based on Reference Points. Appl Soft Comput 50(1):344–355. https://doi.org/10.1016/j.asoc.2016.11.009

    Article  Google Scholar 

  7. Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4):474–494. https://doi.org/10.1109/TEVC.2012.2204264

    Article  Google Scholar 

  8. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  9. Laumanns M, Ocenasek J.(2002). Bayesian Optimization Algorithms for Multi-objective Optimization. International Conference on Parallel Problem Solving from Nature. Springer-Verlag, Inc. doi: https://doi.org/10.1007/3-540-45712-7_29

    Chapter  Google Scholar 

  10. Jiang S, Yang S (2017) A strength Pareto evolutionary algorithm based on reference direction for multi-objective and many-objective optimization. IEEE Trans Evol Comput 21(3):329–346. https://doi.org/10.1109/TEVC.2016.2592479

    Article  Google Scholar 

  11. Elarbi M, Bechikh S, Gupta A, Said LB, Ong YS (2018) A new decomposition-based NSGA-II for many-objective optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(7):1191–1210. https://doi.org/10.1109/TSMC.2017.2654301

    Article  Google Scholar 

  12. Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York. https://doi.org/10.1007/978-0-85729-652-8_1

    Book  MATH  Google Scholar 

  13. Kenndy J, Eberhart RC (1995) Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, vol IV. IEEE Service Center, Piscataway, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Book  Google Scholar 

  14. Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many Objective Particle Swarm Optimization. Inf Sci 374:115–134. https://doi.org/10.1016/j.ins.2016.09.026

    Article  Google Scholar 

  15. Coello Coello CA, Pulido GT, Lechuga MS (2004) Handing Multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  16. Zadeh LA (1968) Fuzzy algorithms. Inf Control 12(2):94–102. https://doi.org/10.1016/S0019-9958(68)90211-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Y Qi, F Liu, M Liu, M Gong, L Jiao. (2012) Multi-objective immune algorithm with Baldwinian learning, Applied Soft Computing 12(8):2654-2674. doi: 10.1016 /j.asoc.2012.04.005

  18. A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, et al. (2009). SMPSO: A new PSO-based metaheuristic for multi-objective optimization, Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 66–73. https://doi.org/10.1109/MCDM.2009.4938830

  19. Lin Q, Li J, Zhihua D et al (2015) A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res 247(3):732–744. https://doi.org/10.1016/j.ejor.2015.06.071

    Article  MathSciNet  MATH  Google Scholar 

  20. Li H, Landasilva D (2011) An Adaptive Evolutionary Multi-Objective Approach Based on Simulated Annealing. MIT Press. https://doi.org/10.1162/EVCO_a_00038

    Article  Google Scholar 

  21. Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans on Systems, Man, and Cybernetics 34(3):315–326. https://doi.org/10.1109/TSMCA.2004.824873

    Article  Google Scholar 

  22. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing Journal 11(4):3658–3670. https://doi.org/10.1016/j.asoc.2011.01.037

    Article  Google Scholar 

  23. Hernandez Diaz A, Santana Quintero L, Coello Coello C et al (2007) Pareto-Adaptive 휀-dominance. Evol Comput 15(4):493–517. https://doi.org/10.1162/evco.2007.15.4.493

    Article  Google Scholar 

  24. Said LB, Bechikh S, Ghedira K (2010) The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818. https://doi.org/10.1109/TEVC.2010.2041060

    Article  Google Scholar 

  25. Peng W, Zhang Q (2008) A Decomposition-based Multi-objective Particle Swarm Optimization Algorithm for Continuous Optimization Problems. IEEE International Conference on Granular Computing 15(3):534–537. https://doi.org/10.1109/GRC.2008.4664724

    Article  Google Scholar 

  26. Zhou C, Dai G, Wang M et al (2018) Indicator and Reference Points Co-Guided Evolutionary Algorithm for Many-Objective Optimization Problems. Knowl-Based Syst 140:50–63. https://doi.org/10.1155/2018/1435463

    Article  Google Scholar 

  27. He Z, Yen GG, Zhang J (2014) Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms. IEEE Trans Evol Comput 18(2):269–285. https://doi.org/10.1109/TEVC.2013.2258025

    Article  Google Scholar 

  28. Zou XF, Chen Y, Liu MZ et al (2008) A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics 38(5):1402–1412. https://doi.org/10.1109/TSMCB.2008.926329

    Article  Google Scholar 

  29. Das I, Dennis J (1998) Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optimiz 8(3):631–657. https://doi.org/10.1137/S1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  30. Martínez SZ, Coello CAC (2011) A Multi-objective Particle Swarm Optimizer Based on Decomposition. Conference on Genetic & Evolutionary Computation 162(1):69–76. https://doi.org/10.1145/2001576.2001587

    Article  Google Scholar 

  31. Yang S, Li M, Liu X et al (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans on Evolutionary Computation 17(5):721–736. https://doi.org/10.1109/TEVC.2012.2227145

    Article  Google Scholar 

  32. Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1):41–63. https://doi.org/10.1109/TEVC.2007.894202

    Article  Google Scholar 

  33. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417=

    Article  MATH  Google Scholar 

  34. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multiobjective optimization test problems. In Proceedings of IEEE Congress on Evolutionary Computation, pp 825-830. https://doi.org/10.1109/CEC.2002.1007032

  35. Dai C, Wang Y, Ye M (2015) A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci 325:541–557. https://doi.org/10.1016/j.ins.2015.07.018

    Article  Google Scholar 

  36. K. Atanassov.M. (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  Google Scholar 

  37. Yuan Y et al (2016) A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(1):16–37. https://doi.org/10.1109/TEVC.2015.2420112

    Article  Google Scholar 

  38. Tian Y, Xiang X, Zhang X, Cheng R, Jin Y (2018) Sampling Reference Points on the Pareto Fronts of Benchmark Multi-Objective Optimization Problems. 2018 IEEE Congress on Evolutionary Computation (CEC). https://doi.org/10.1109/CEC.2018.8477730

  39. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87. https://doi.org/10.1109/MCI.2017.2742868

    Article  Google Scholar 

  40. Jiang S, Cai Z (2010) Faster convergence and higher hypervolume for multi-objective evolutionary algorithms by orthogonal and uniform design. Advances in Computation & Intelligence. https://doi.org/10.1007/978-3-642-16493-4_33

    Chapter  Google Scholar 

  41. Li B, Tang K, Li J, Yao X (2016) Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Transactions on Evolutionary Computation, 20 (6):924 - 938. https://doi.org/10.1109/TEVC.2016.2549267

    Article  Google Scholar 

  42. Lin Q, Liu S, Zhu Q et al (2018) Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput 22(1):32–46. https://doi.org/10.1109/TEVC.2016.2631279

    Article  Google Scholar 

  43. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  44. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints, Evolutionary Computation. IEEE Transactions on 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  45. Cheng R, Jin Y, Olhofer M et al (2016) A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans Evol Comput 20(5):773–791. https://doi.org/10.1109/TEVC.2016.2519378

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Key Research and Development Program Projects of China (Grant No. 2018YFC1504700) and project of Natural Science Foundation in Shaanxi Province (Grant No. 2018JM6029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Chen, L., Wang, Y. et al. A reference points and intuitionistic fuzzy dominance based particle swarm algorithm for multi/many-objective optimization. Appl Intell 50, 1133–1154 (2020). https://doi.org/10.1007/s10489-019-01569-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01569-3

Keywords

Navigation