Skip to main content

Advertisement

Log in

Elderly’s acceptance of companion robots from the perspective of user factors

  • Short Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

Taiwan has entered the aged society in March 2018, meaning that more social and technological resources are needed to solve the problems related to the elderly’s companion service. Companion robots are considered a solution to effectively meet the elderly’s service needs for family escort. However, little is known about the elderly’s acceptance of companion robots. The purpose of this study is to explore the elderly’s acceptance of companion robots from the perspective of user factors. The research was carried out by a mixed method of interviews and questionnaires. Independent sample t test and one-way analysis of variance were used for analysis. The results showed that there were significant differences in the attitude and perceived usefulness of companion robots in terms of education level, living conditions, professional background and technical experience. The research found that the elderly living with parents, with master’s (or doctor’s) education, medical professional background and experience in the use of scientific and technological products expressed more positive attitudes in the responses to the items on the constructs of attitude and perceived usefulness, while the attitude of those with primary school education and humanities professional background, with no experience in scientific and technological products, was relatively negative. Research shows that the acceptance of companion robots by the elderly was affected to some extent by user factors. These findings can provide reference for robot designers, industrial designers and other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization.: World report on ageing and health. https://www.who.int/ageing/events/world-report-2015-launch/en/ (2015). Accessed 10 Dec 2018

  2. National Development Council.: Population estimate of the republic of Taiwan (2018–2065). https://www.ndc.gov.tw/Content_List.aspx?n=84223C65B6F94D72 (2018). Accessed 09 Dec 2018

  3. Yan, F., Yuze, C.: Quantity can be improved to build a long-term care system of sustainable development. Commun. Dev. Quart. 153, 5–18 (2015)

    Google Scholar 

  4. Miskelly, F.G.: Assistive technology in elderly care. Age Ageing 30(6), 455–458 (2001). https://doi.org/10.1093/ageing/30.6.455

    Article  Google Scholar 

  5. Xu, Q.L., Ng, J.S.L., Tan, O.Y., Huang, Z.Y.: Needs and attitudes of Singaporeans towards home service robots: a multi-generational perspective. Univ. Access Inf. Soc. 14(4), 477–486 (2015). https://doi.org/10.1007/s10209-014-0355-2

    Article  Google Scholar 

  6. Graf, B., Hans, M., Schraft, R.D.: Care-O-bot II—development of a next generation robotic home assistant. Auton. Robots 16(2), 193–205 (2004)

    Article  Google Scholar 

  7. Esposito, R., Fiorini, L., Limosani, R., Bonaccorsi, M., Manzi, A., Cavallo, F., Dario, P.: Supporting active and healthy aging with advanced robotics integrated in smart environment. In: Artificial Intelligence: Concepts, Methodologies, Tools, and Applications, pp 2656–2686. IGI Global (2017)

  8. Vandemeulebroucke, T., de Casterle, B.D., Gastmans, C.: How do older adults experience and perceive socially assistive robots in aged care: a systematic review of qualitative evidence. Aging Ment. Health 22(2), 149–167 (2018). https://doi.org/10.1080/13607863.2017.1286455

    Article  Google Scholar 

  9. Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)

    Article  Google Scholar 

  10. Robinson, H., MacDonald, B.A., Kerse, N., Broadbent, E.: Suitability of healthcare robots for a dementia unit and suggested improvements. J. Am. Med. Dir. Assoc. 14(1), 34–40 (2013). https://doi.org/10.1016/j.jamda.2012.09.006

    Article  Google Scholar 

  11. Flandorfer, P.: population ageing and socially assistive robots for elderly persons: the importance of sociodemographic factors for user acceptance. Int. J. Popul. Res. 2012, 1–13 (2012). https://doi.org/10.1155/2012/829835

    Article  Google Scholar 

  12. Bartlett, B., Estivill-Castro, V., Seymon, S., Tourky, A.: Robots for pre-orientation and interaction of toddlers and preschoolers who are blind. In: Proceedings of the 2003 Australasian Conference on Robotics and Automation, CD-Rom Proceedings, Citeseer, pp. 0–9587

  13. Breazeal, C.L.: Designing Sociable Robots. MIT press, Cambridge (2004)

    Book  Google Scholar 

  14. Frennert, S., Östlund, B., Eftring, H.: Would granny let an assistive robot into her home? In: International Conference on Social Robotics, pp. 128–137. Springer

  15. Wu, Y.H., Cristancho-Lacroix, V., Fassert, C., Faucounau, V., de Rotrou, J., Rigaud, A.S.: The attitudes and perceptions of older adults with mild cognitive impairment toward an assistive robot. J. Appl. Gerontol. 35(1), 3–17 (2016). https://doi.org/10.1177/0733464813515092

    Article  Google Scholar 

  16. Zsiga, K., Edelmayer, G., Rumeau, P., Peter, O., Toth, A., Fazekas, G.: Home care robot for socially supporting the elderly: focus group studies in three European countries to screen user attitudes and requirements. Int. J. Rehabil. Res. 36(4), 375–378 (2013). https://doi.org/10.1097/MRR.0b013e3283643d26

    Article  Google Scholar 

  17. Wu, Y.-h., Wrobel, J., Cornuet, M., Kerhervé, H., Damnée, S., Rigaud, A.-S.: Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting. Clin. Interv. Aging 9, 801 (2014)

    Article  Google Scholar 

  18. Pino, M., Boulay, M., Jouen, F., Rigaud, A.S.: “Are we ready for robots that care for us?” Attitudes and opinions of older adults toward socially assistive robots. Front. Aging Neurosci. 7, 15 (2015). https://doi.org/10.3389/fnagi.2015.00141

    Article  Google Scholar 

  19. Broadbent, E., Stafford, R., MacDonald, B.: Acceptance of healthcare robots for the older population: review and future directions. Int. J. Soc. Robot. 1(4), 319–330 (2009). https://doi.org/10.1007/s12369-009-0030-6

    Article  Google Scholar 

  20. Wada, K., Shibata, T., Saito, T., Tanie, K.: Effects of robot assisted activity to elderly people who stay at a health service facility for the aged. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), pp. 2847–2852. IEEE

  21. Shibata, T., Tanie, K.: Influence of a priori knowledge in subjective interpretation and evaluation by short-term interaction with mental commit robot. In: Proceedings 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), pp. 169–174. IEEE (2000)

  22. Wada, K., Shibata, T., Musha, T., Kimura, S.: Effects of robot therapy for demented patients evaluated by EEG. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 1552–1557. IEEE (2005)

  23. McGlynn, S.A., Kemple, S., Mitzner, T.L., King, C.H.A., Rogers, W.A.: Understanding the potential of PARO for healthy older adults. Int. J. Hum. Comput. Stud. 100, 33–47 (2017). https://doi.org/10.1016/j.ijhcs.2016.12.004

    Article  Google Scholar 

  24. Zsiga, K., Toth, A., Pilissy, T., Peter, O., Denes, Z., Fazekas, G.: Evaluation of a companion robot based on field tests with single older adults in their homes. Assist. Technol. 30(5), 259–266 (2018). https://doi.org/10.1080/10400435.2017.1322158

    Article  Google Scholar 

  25. Prakash, A., Rogers, W.A.: Why some humanoid faces are perceived more positively than others: effects of human-likeness and task. Int. J. Soc. Robot. 7(2), 309–331 (2015). https://doi.org/10.1007/s12369-014-0269-4

    Article  Google Scholar 

  26. Chen, T.L., Bhattacharjee, T., Beer, J.M., Ting, L.H., Hackney, M.E., Rogers, W.A., Kemp, C.C.: Older adults’ acceptance of a robot for partner dance-based exercise. PLoS ONE 12(10), 29 (2017). https://doi.org/10.1371/journal.pone.0182736

    Article  Google Scholar 

  27. Cortellessa, G., Scopelliti, M., Tiberio, L., Svedberg, G.K., Loutfi, A., Pecora, F.: A cross-cultural evaluation of domestic assistive robots. In: AAAI Fall Symposium: AI in Eldercare: New Solutions to Old Problems, pp. 24–31 (2008)

  28. Kowalewski, S., Wilkowska, W., Ziefle, M.: Accounting for user diversity in the acceptance of medical assistive technologies. In: International Conference on Electronic Healthcare, pp 175–183. Springer (2010)

  29. Van Dijk, J.A.: Digital divide research, achievements and shortcomings. Poetics 34(4–5), 221–235 (2006)

    Article  Google Scholar 

  30. Broadbent, E., Garrett, J., Jepsen, N., Li Ogilvie, V., Ahn, H.S., Robinson, H., Peri, K., Kerse, N., Rouse, P., Pillai, A., MacDonald, B.: Using robots at home to support patients with chronic obstructive pulmonary disease: pilot randomized controlled trial. J. Med. Internet Res. 20(2), 15 (2018). https://doi.org/10.2196/jmir.8640

    Article  Google Scholar 

  31. Mitzner, T.L., Boron, J.B., Fausset, C.B., Adams, A.E., Charness, N., Czaja, S.J., Dijkstra, K., Fisk, A.D., Rogers, W.A., Sharit, J.: Older adults talk technology: technology usage and attitudes. Comput. Hum. Behav. 26(6), 1710–1721 (2010). https://doi.org/10.1016/j.chb.2010.06.020

    Article  Google Scholar 

  32. Smarr, C.-A., Prakash, A., Beer, J.M., Mitzner, T.L., Kemp, C.C., Rogers, W.A.: Older adults’ preferences for and acceptance of robot assistance for everyday living tasks. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 1, pp. 153–157. SAGE Publications Sage CA, Los Angeles (2012)

  33. Marcel, I.: Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. J. Rehabil. Res. Dev. 28(2), 33–34 (1991). https://doi.org/10.1682/JRRD.1991.04.0033

    Article  Google Scholar 

  34. Koay, K.L., Syrdal, D.S., Walters, M.L., Dautenhahn, K.: Living with robots: investigating the habituation effect in participants’ preferences during a longitudinal human–robot interaction study. In: The 16th IEEE International Symposium on Robot and Human interactive Communication, 2007. RO-MAN 2007, pp. 564–569. IEEE (2007)

  35. Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A., Sharit, J.: Factors predicting the use of technology: findings from the center for research and education on aging and technology enhancement (CREATE). Psychol. Aging 21(2), 333–352 (2006). https://doi.org/10.1037/0882-7974.21.2.333

    Article  Google Scholar 

  36. Ellis, R.D., Allaire, J.C.: Modeling computer interest in older adults: the role of age, education, computer knowledge, and computer anxiety. Hum. Factors 41(3), 345–355 (1999). https://doi.org/10.1518/001872099779610996

    Article  Google Scholar 

  37. Sugiyama, S., Vincent, J.: Social robots and emotion: transcending the boundary between humans and ICTs. Intervalla 1, 1–6 (2013)

    Google Scholar 

  38. Heerink, M., Krose, B., Evers, V., Wielinga, B.: Assessing acceptance of assistive social agent technology by older adults: the Almere model. Int. J. Soc. Robot. 2(4), 361–375 (2010). https://doi.org/10.1007/s12369-010-0068-5

    Article  Google Scholar 

  39. Smarr, C.A., Mitzner, T.L., Beer, J.M., Prakash, A., Chen, T.L., Kemp, C.C., Rogers, W.A.: Domestic robots for older adults: attitudes, preferences, and potential. Int. J. Soc. Robot. 6(2), 229–247 (2014). https://doi.org/10.1007/s12369-013-0220-0

    Article  Google Scholar 

  40. Dillon, A.: User acceptance of information technology. In: Encyclopedia of Human Factors and Ergonomics. Taylor and Francis, London (2001). http://hdl.handle.net/10150/105880

  41. Chang, R.C.S., Lu, H.P., Yang, P.S.: Stereotypes or golden rules? Exploring likable voice traits of social robots as active aging companions for tech-savvy baby boomers in Taiwan. Comput. Hum. Behav. 84, 194–210 (2018). https://doi.org/10.1016/j.chb.2018.02.025

    Article  Google Scholar 

  42. Heerink, M.: Exploring the influence of age, gender, education and computer experience on robot acceptance by older adults. In: Proceedings of the 6th International Conference on Human–Robot Interaction, pp. 147–148. ACM (2011)

  43. Ezer, N., Fisk, A.D., Rogers, W.A.: Attitudinal and intentional acceptance of domestic robots by younger and older adults. In: International Conference on Universal Access in Human–Computer Interaction, pp. 39–48. Springer (2009)

  44. Arras, K.O., Cerqui, D.: Do we want to share our lives and bodies with robots? A 2000 people survey: a 2000-people survey. Technical Report 605 (2005)

  45. Heerink, M., Krose, B., Evers, V., Wielinga, B.: Measuring acceptance of an assistive social robot: a suggested toolkit. In: RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 528–533. IEEE (2009)

  46. Nomura, T., Kanda, T., Suzuki, T., Kato, K.: Prediction of human behavior in human–robot interaction using psychological scales for anxiety and negative attitudes toward robots. IEEE Trans. Robot. 24(2), 442–451 (2008)

    Article  Google Scholar 

  47. Young, J.E., Hawkins, R., Sharlin, E., Igarashi, T.: Toward acceptable domestic robots: applying insights from social psychology. Int. J. Soc. Robot. 1(1), 95–108 (2009). https://doi.org/10.1007/s12369-008-0006-y

    Article  Google Scholar 

  48. Yang, H.-d., Yoo, Y.: It’s all about attitude: revisiting the technology acceptance model. Decis. Support Syst. 38(1), 19–31 (2004)

    Article  Google Scholar 

  49. Santos, J.R.A.: Cronbach’s alpha: a tool for assessing the reliability of scales. J. Ext. 37(2), 1–5 (1999)

    Google Scholar 

  50. Park, E., Kwon, S.J.: The adoption of teaching assistant robots: a technology acceptance model approach. Progr. Electron. Libr. Inf. Syst. 50(4), 354–366 (2016). https://doi.org/10.1108/prog-02-2016-0017

    Article  Google Scholar 

  51. Ezer, N., Fisk, A.D., Rogers, W.A.: More than a servant: self-reported willingness of younger and older adults to having a robot perform interactive and critical tasks in the home. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol 2, pp. 136–140. SAGE Publications Sage CA, Los Angeles (2009)

  52. Bevilacqua, R., Di Rosa, M., Felici, E., Stara, V., Barbabella, F., Rossi, L.: Towards an impact assessment framework for ICT-based systems supporting older people: making evaluation comprehensive through appropriate concepts and metrics. In: Longhi, S., Siciliano, P., Germani, M., Monteriù, A. (eds.) Ambient Assisted Living, pp 215–222. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01119-6_22

    Chapter  Google Scholar 

  53. Lattanzio, F., Abbatecola, A.M., Bevilacqua, R., Chiatti, C., Corsonello, A., Rossi, L., Bustacchini, S., Bernabei, R.: Advanced technology care innovation for older people in Italy: necessity and opportunity to promote health and wellbeing. J. Am. Med. Dir. Assoc. 15(7), 457–466 (2014). https://doi.org/10.1016/j.jamda.2014.04.003

    Article  Google Scholar 

  54. Beer, J., Prakash, A., Smarr, C., Chen, T., Hawkins, K., Nguyen, H., Rogers, W.: Older users’ acceptance of an assistive robot: attitudinal changes following brief exposure. Gerontechnology 16(1), 21–36 (2017)

    Article  Google Scholar 

  55. Giuliani, M.V., Scopelliti, M., Fornara, F.: Elderly people at home: technological help in everyday activities. In: IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2005, pp. 365–370. IEEE (2005)

  56. Turja, T., Van Aerschot, L., Särkikoski, T., Oksanen, A.: Finnish healthcare professionals’ attitudes towards robots: reflections on a population sample. Nurs. Open 5, 300–309 (2018)

    Article  Google Scholar 

  57. Hall, A.K., Backonja, U., Painter, I., Cakmak, M., Sung, M., Lau, T., Thompson, H.J., Demiris, G.: Acceptance and perceived usefulness of robots to assist with activities of daily living and healthcare tasks. Assist. Technol. 31(3), 133–140 (2017). https://doi.org/10.1080/10400435.2017.1396565

    Article  Google Scholar 

  58. Mitzner, T.L., Chen, T.L., Kemp, C.C., Rogers, W.A.: Identifying the potential for robotics to assist older adults in different living environments. Int. J. Soc. Robot. 6(2), 213–227 (2014). https://doi.org/10.1007/s12369-013-0218-7

    Article  Google Scholar 

  59. Rantanen, T., Lehto, P., Vuorinen, P., Coco, K.: The adoption of care robots in home care—a survey on the attitudes of Finnish home care personnel. J. Clin. Nurs. 27(9–10), 1846–1859 (2018)

    Article  Google Scholar 

  60. Dinet, J., Vivian, R.: Perception and attitudes towards anthropomorphic robots in France: validation of an assessment scale. Psychol. Fr. 60(2), 173–189 (2015). https://doi.org/10.1016/j.psfr.2015.05.002

    Article  Google Scholar 

  61. Tay, B., Jung, Y.B., Park, T.: When stereotypes meet robots: the double-edge sword of robot gender and personality in human–robot interaction. Comput. Hum. Behav. 38, 75–84 (2014). https://doi.org/10.1016/j.chb.2014.05.014

    Article  Google Scholar 

  62. Paperno, N., Rupp, M.A., Parkhurst, E.L., Maboudou-Tchao, E.M., Smither, J.A., Bricout, J., Behal, A.: Age and gender differences in performance for operating a robotic manipulator. IEEE Trans. Hum. Mach. Syst. 49(2), 137–149 (2019). https://doi.org/10.1109/thms.2019.2890855

    Article  Google Scholar 

  63. Lee, W.H., Lin, C.W., Shih, K.H.: A technology acceptance model for the perception of restaurant service robots for trust, interactivity, and output quality. Int. J. Mob. Commun. 16(4), 361–376 (2018). https://doi.org/10.1504/ijmc.2018.092666

    Article  Google Scholar 

  64. Beer, J.M., Prakash, A., Smarr, C.-A., Mitzner, T.L., Kemp, C.C., Rogers, W.A.: Commanding your robot older adults’ preferences for methods of robot control. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 1, pp. 1263–1267. SAGE Publications Sage CA, Los Angeles (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyang Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Huang, C. Elderly’s acceptance of companion robots from the perspective of user factors. Univ Access Inf Soc 19, 935–948 (2020). https://doi.org/10.1007/s10209-019-00692-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-019-00692-9

Keywords

Navigation