Skip to main content
Log in

Two-sided variable inspection plans for arbitrary continuous populations with unknown distribution

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

The ordinary variable inspection plans rely on the normality of the underlying populations. However, this assumption is vague or even not satisfied. Moreover, ordinary variable sampling plans are sensitive against deviations from the distribution assumption. Nonconforming items occur in the tails of the distribution. They can be approximated by a generalized Pareto distribution (GPD). We investigate several estimates of their parameters according to their usefulness not only for the GPD, but also for arbitrary continuous distributions. The likelihood moment estimates (LMEs) of Zhang (Aust N Z J Stat 49:69–77, 2007) and the Bayesian estimate (ZSE) of Zhang and Stephens (Technometrics 51:316–325, 2009) turn out to be the best for our purpose. Then, we use these parameter estimates to estimate the fraction defective. The asymptotic normality of the LME (cf. Zhang 2007) and that of the fraction defective are used to construct the sampling plan. The difference to the sampling plans constructed in Kössler (Allg Stat Arch 83:416–433, 1999; in: Steland, Rafajlowicz, Szajowski (eds) Stochastic models, statistics, and their applications, Springer, Heidelberg, pp 93–100, 2015) is that we now use the new parameter estimates. Moreover, in contrast to the aforementioned papers, we now also consider two-sided specification limits. An industrial example illustrates the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balkema, A., de Haan, L.: Residual life time at great age. Ann. Probab. 2, 792–804 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes, Theory and Applications. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  • Beirlant, J., Caero, F., Gomes, Y.: An overview and open research topics in statistics of univariate extremes. REVSTAT Stat. J. 10, 1–31 (2012)

    MathSciNet  MATH  Google Scholar 

  • Bruhn-Suhr, M., Krumbholz, W.: A new variable sampling plan for normally distributed lots with unknown standard deviation and double specification limits. Stat. Hefte 31, 195–207 (1990)

    MathSciNet  MATH  Google Scholar 

  • Bruhn-Suhr, M., Krumbholz, W.: Exact two-sided Lieberman–Resnikoff sampling plans. Stat. Hefte 32, 233–241 (1991)

    MathSciNet  MATH  Google Scholar 

  • Caeiro, F., Gomes, M.I.: Threshold selection in extreme value analysis. In: Dey, D., Yan, Y. (eds.) Extreme Value Modeling and Risk Analysis: Methods and Applications, pp. 69–87. Chapman and Hall/CRC, Boca Raton (2015)

    Chapter  Google Scholar 

  • Castillo, E., Hadi, A.S.: Fitting the generalized Pareto distribution to data. J. Am. Stat. Assoc. 92, 1609–1620 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Davison, A.C.: Modeling excesses over high threshold with an application. In: Tiago de Oliveira, J. (ed.) Statistical Extremes and Applications, pp. 461–482. D. Reidel, Dordrecht (1984)

  • de Haan, L., Fereira, A.: Extreme Value Theory. Springer, New York (2006)

    Book  Google Scholar 

  • Drees, H., De Haan, L., Resnick, S.: How to make a Hill plot. Ann. Stat. 28, 254–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Falk, M.: Best attainable rate of joint convergence of extremes. In: Hüsler, J., Reiss, R.-D. (eds.) Extreme Value Theory, Proceedings of a Conference Held in Oberwolfach, Dec. 6–12, 1987, pp. 1–9. Springer, Berlin (1989)

    Google Scholar 

  • Fischer, M., Vaughan, D.: The beta-hyperbolic secant (bhs) distribution. Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Statistik und Ökonometrie, Diskussionspapiere (2004)

  • Giles, D., Feng, H., Godwin, R.: Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution. Commun. Stat. Theory Methods 45, 2465–2483 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Grimshaw, S.D.: Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics 35, 185–191 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Hand, D., Daly, F., Dunn, A., McConway, K., Ostrowski, E.: Handbook of Small Data Sets. Chapman and Hall, London (1994)

    Book  MATH  Google Scholar 

  • Hosking, J., Wallis, J.: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 39, 339–349 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, M., Faddy, M.: A skew extension of the t-distribution, with applications. J. R. Stat. Soc. B 65(1), 159–174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kössler, W.: A new one-sided variable inspection plan for continuous distribution functions. Allg. Stat. Arch. 83, 416–433 (1999)

    Google Scholar 

  • Kössler, W.: Variable inspection plans for continuous distributions with unknown short tail distributions. In: Steland, A., Rafajlowicz, E., Szajowski, K. (eds.) Stochastik Models, Statistics, and Their Applications, pp. 93–100. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  • Kössler, W., Lenz, H.J.: On the robustness of Lieberman-Resnikoff sampling plans by variables. J. Indian Assoc. Prod. Qual. Reliab. 20, 93–105 (1995)

    MathSciNet  MATH  Google Scholar 

  • Kössler, W., Lenz, H.J.: On the non-robustness of maximum-likelihood sampling plans by variables. In: Lenz, H.-J., Wilrich, PTh (eds.) Frontiers in Statistical Quality Control, vol. 5, pp. 38–52. Physica, Heidelberg (1997)

    Chapter  Google Scholar 

  • Kössler, W., Lenz, B., Lenz, H.J.: Exvar: exact variable inspection plans in statistical quality control. Stat. Softw. Newsl. 17, 97–99 (1994)

    MATH  Google Scholar 

  • Krumbholz, W., Steuer, D.: On exact and optimal single sampling plans by variables. Adv. Stat. Anal. 98, 87–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lieberman, G., Resnikoff, G.: Sampling plans for inspection by variables. J. Am. Stat. Assoc. 50, 457–516 (1955)

    MathSciNet  MATH  Google Scholar 

  • Mackay, E.B., Challenor, P.G., Bahaj, A.S.: A comparison of estimators for the generalized Pareto distribution. Ocean Eng. 38, 1338–1346 (2011)

    Article  Google Scholar 

  • Ott, J.: Annahmeprüfung für beliebige stetige Verteilungen. Diploma thesis, Humboldt Universität zu Berlin (2016)

  • Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–135 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Resnikoff, G.: A new two-sided acceptance region for sampling by variables. Technical Report 8, Applied mathematics and Statistics Laboratory, Stanford University (1952)

  • Rychlik, I., Rydén, J.: Probability and Risk Analysis: An Introduction for Engineers. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  • Smith, R.: Estimating tails of probability distributions. Ann. Stat. 15, 1174–1207 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, R., Naylor, J.: A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl. Stat. 36(3), 358–369 (1987)

    Article  MathSciNet  Google Scholar 

  • Smith, R., Weissman, I.: Maximum likelihood estimation of the lower tail of a probability distribution. J. R. Stat. Soc. B 47, 285–298 (1985)

    MathSciNet  MATH  Google Scholar 

  • Steland, A., Zähle, H.: Sampling inspection by variables: nonparametric setting. Stat. Neerl. 63, 101–123 (2009)

    Article  MathSciNet  Google Scholar 

  • Uhlmann, W.: Statische Qualitätskontrolle. Teubner, Stuttgart (1982)

    Book  Google Scholar 

  • Zhang, J.: Likelihood moment estimation for the generalized Pareto distribution. Austr. N. Z. J. Stat. 49, 69–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J.: Improving an estimation for the Generalized Pareto distribution. Technometrics 52, 335–339 (2010)

    Article  MathSciNet  Google Scholar 

  • Zhang, J., Stephens, M.A.: A new and efficient estimation method for the generalized Pareto distribution. Technometrics 51, 316–325 (2009)

    Article  MathSciNet  Google Scholar 

  • Zhou, C.: Existence and consistency of the maximum likelihood estimator for the extreme value index. J. Multivar. Anal. 100, 794–815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, C.: The extent of the maximum likelihood estimator for the extreme value index. J. Multivar. Anal. 101, 971–983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors like to thank the referees for their valuable comments that lead to an improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kössler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kössler, W., Ott, J. Two-sided variable inspection plans for arbitrary continuous populations with unknown distribution. AStA Adv Stat Anal 103, 437–452 (2019). https://doi.org/10.1007/s10182-018-00338-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-018-00338-w

Keywords

Mathematics Subject Classification

Navigation