Skip to main content

Advertisement

Log in

High resilience of aquatic community to a 100-year flood in a gravel-bed river

  • Special Feature - Original Paper
  • Ecological Resilience of Ecosystems with Human Impact—Restoration of Plants and Animals
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Our understanding of ecosystem responses to exceedingly large rare flood events is currently limited. We report the resilience of aquatic community to a 100-year record-high flood, and how it varies depending on levels of water pollution, in a fourth-order gravel-bed river in northern Japan. We used data on riparian landscape structure, channel morphology, and community structure of aquatic fauna, which were collected in sites with and without effluent before (1 month–3 years) and after (10 months) the flood. Carbon and nitrogen stable isotope ratios of consumers and basal resources were measured only before (1 year) the flood. We observed aquatic food web with introduced rainbow trout (Oncorhynchus mykiss) as the top predator, with variable relative contributions of basal resources and their pathways to the rainbow trout, under the effects of water pollution. Biofilm-originating dietary carbon became the more dominant resource, with a slightly shorter food-chain length in the polluted sites. The flood led to a loss of riparian forest and a substantial increase in the proportion of exposed gravel bars (5–24%). While the average river-bed elevation changed a little, the localized scours of river bed down to > 2 m were observed with lateral shifts of channel thalweg. Despite the landscape-level physical and structural changes of ecosystem, aquatic community showed a remarkably high resilience exhibiting negligible changes in abundance, except in the polluted site where only fish abundance showed a slight decrease. This study suggests that the abundance of aquatic organisms in gravel-bed rivers is resilient to a flood of unprecedented magnitude in recent history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson C, Cabana G (2006) Does δ15N in river food webs reflect the intensity and origin of N loads from the watershed? Sci Total Environ 367:968–978

    Article  CAS  PubMed  Google Scholar 

  • Arscott DB, Tockner K, van der Nat D, Ward JV (2002) Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5:802–814

    Article  Google Scholar 

  • Baxter CV, Fausch KD, Murakami M, Chapman PL (2004) Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–2663

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303

    Article  CAS  PubMed  Google Scholar 

  • Biggs BJ, Francoeur SN, Huryn AD, Young R, Arbuckle CJ, Townsend CR (2000) Trophic cascades in streams: effects of nutrient enrichment on autotrophic and consumer benthic communities under two different fish predation regimes. Can J Fish Aquat Sci 57:1380–1394

    Article  Google Scholar 

  • Boulton AJ, Peterson CG, Grimm NB, Fisher SG (1992) Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology 73:2192–2207

    Article  Google Scholar 

  • Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci 93:10844–10847

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Chaloner DT, Lamberti GA, Merritt RW, Mitchell NL, Ostrom PH, Wipfli MS (2004) Variation in responses to spawning Pacific salmon among three south–eastern Alaska streams. Freshw Biol 49:587–599

    Article  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD, Eggert SL (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565

    Article  CAS  PubMed  Google Scholar 

  • Cross WF, Baxter CV, Donner KC, Rosi-Marshall EJ, Kennedy TA, Hall RO, Wellard Kelly HA, Rogers RS (2011) Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol Appl 21:2016–2033

    Article  PubMed  Google Scholar 

  • Crowl TA, Townsend CR, McIntosh AR (1992) The impact of introduced brown and rainbow trout on native fish: the case of Australasia. Rev Fish Biol Fisher 2:217–241

    Article  Google Scholar 

  • Curt MD, Aguado P, Sanchez G, Bigeriego M, Fernandez J (2004) Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air Soil Pollut 151:135–142

    Article  CAS  Google Scholar 

  • Davis JM, Rosemond AD, Eggert SL, Cross WF, Wallace JB (2010) Long-term nutrient enrichment decouples predator and prey production. Proc Natl Acad Sci 107:121–126

    Article  PubMed  Google Scholar 

  • Doi H, Takemon Y, Ohta T, Ishida Y, Kikuchi E (2007) Effects of reach-scale canopy cover on trophic pathways of caddisfly larvae in a Japanese mountain stream. Mar Freshwater Res 58:811–817

    Article  CAS  Google Scholar 

  • England LE, Rosemond AD (2004) Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshw Biol 49:721–734

    Article  Google Scholar 

  • Erskine WD (1986) River metamorphosis and environmental change in the Macdonald Valley, New South Wales, since 1949. Geogr Res 24:88–107

    Google Scholar 

  • Fausch KD, Taniguchi Y, Nakano S, Grossman GD, Townsend CR (2001) Flood disturbance regimes influence rainbow trout invasion success among five holarctic regions. Ecol Appl 11:1438–1455

    Article  Google Scholar 

  • Finlay JC (2001) Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82:1052–1064

    Google Scholar 

  • Focken U, Becker K (1998) Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia 115:337–343

    Article  CAS  PubMed  Google Scholar 

  • Fuller IC (2008) Geomorphic impacts of a 100-year flood: Kiwitea Stream, Manawatu catchment, New Zealand. Geomorphology 98:84–95

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta PM, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Friedman JM, Lee VJ (2002) Extreme floods, channel change, and riparian forests along ephemeral streams. Ecol Monogr 72:409–425

    Article  Google Scholar 

  • Hastie LC, Boon PJ, Young MR, Way S (2001) The effects of a major flood on an endangered freshwater mussel population. Biol Cons 98:107–115

    Article  Google Scholar 

  • Hering D, Gerhard M, Manderbach R, Reich M (2004) Impact of a 100-year flood on vegetation, benthic invertebrates, riparian fauna and large woody debris standing stock in an alpine floodplain. River Res Appl 20:445–457

    Article  Google Scholar 

  • Hirabayashi Y, Kanae S, Emori S, Oki T, Kimoto M (2008) Global projections of changing risks of floods and droughts in a changing climate. Hydrolog Sci J 53:754–772

    Article  Google Scholar 

  • Kawai T, Tanida K (eds) (2005) Aquatic insects of Japan: keys to families, genera and species. Hadano, Kanagawa, Japan. Tokai University Press, Tokyo (In Japanese)

    Google Scholar 

  • Lake JL, McKinney RA, Osterman FA, Pruell RJ, Kiddon J, Ryba SA, Libby AD (2001) Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Can J Fish Aquat Sci 58:870–878

    Article  CAS  Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud Z, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562

    Article  PubMed  Google Scholar 

  • Mackey RL, Currie DJ (2001) The diversity–disturbance relationship: is it generally strong and peaked? Ecology 82:3479–3492

    Google Scholar 

  • Marks JC, Power ME, Parker MS (2000) Flood disturbance, algal productivity, and interannual variation in food chain length. Oikos 90:20–27

    Article  Google Scholar 

  • Maruyama H, Takai M (2000) Kawamushi Zukan. Kawamushi Zukan. Zenkoku Noson Kyoiku Kyokai, Tokyo, p 244 (In Japanese)

    Google Scholar 

  • Matthaei CD, Arbuckle CJ, Townsend CR (2000) Stable surface stones as refugia for invertebrates during disturbance in a New Zealand stream. J N Am Benthol Soc 19:82–93

    Article  Google Scholar 

  • McClelland JW, Valiela I (1998) Linking nitrogen in estuarine producers to land-derived sources. Limnol Oceanogr 43:577–585

    Article  CAS  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • MLIT (2017) A summary on the damages and socioeconomical effects of Hokkaido heavy rain in 2016, https://www.hkd.mlit.go.jp/ky/saigai/splaat000000otsj-att/splaat000000ougk.pdf (in Japanese). Accessed 31 Aug 2018

  • Morrissey CA, Boldt A, Mapstone A, Newton J, Ormerod SJ (2013) Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia 700:231–244

    Article  CAS  Google Scholar 

  • Nakamura F, Shin N, Inahara S (2007) Shifting mosaic in maintaining diversity of floodplain tree species in the northern temperate zone of Japan. For Ecol Manag 241:28–38

    Article  Google Scholar 

  • Nakano S, Kawaguchi Y, Taniguchi Y, Miyasaka H, Shibata Y, Urabe H, Kuhara N (1999) Selective foraging on terrestrial invertebrates by rainbow trout in a forested headwater stream in northern Japan. Ecol Res 14:351–360

    Article  Google Scholar 

  • Negishi JN, Inoue M, Nunokawa M (2002) Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan. Freshw Biol 47:1515–1529

    Article  Google Scholar 

  • Negishi JN, Hibino A, Miura K, Kawanishi R, Watanabe N Coupled benthic-hyporheic responses of macroinvertebrates to surface water pollution in a gravel-bed river. Freshwater Science (in press)

  • Niemi GJ, DeVore P, Detenbeck N, Taylor D, Lima A, Pastor J, Yount JD, Naiman RJ (1990) Overview of case studies on recovery of aquatic systems from disturbance. Environ Manag 14:571–587

    Article  Google Scholar 

  • Niyogi DK, Koren M, Arbuckle CJ, Townsend CR (2007) Stream communities along a catchment land-use gradient: subsidy-stress responses to pastoral development. Environ Manage 39:213–225

    Article  PubMed  Google Scholar 

  • Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Jackson AL, Grey J, Kelly DJ, Inger R (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399

    Google Scholar 

  • Pearsons TN, Li HW, Lamberti GA (1992) Influence of habitat complexity on resistance to flooding and resilience of stream fish assemblages. Trans Am Fish Soc 121:427–436

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. In Food webs. Springer, Dordrecht, pp 1–11

    Book  Google Scholar 

  • Pimm SL, Kitching RL (1987) The determinants of food chain lengths. Oikos 302–307

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Power ME, Parker MS, Dietrich WE (2008) Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecol Monogr 78:263–282

    Article  Google Scholar 

  • QGIS Development Team (2017). QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org. Accessed 15 May 2018

  • Quinn JM, Hickey CW (1990) Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. N Z J Mar Fresh 24:411–427

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Url https://www.R-project.org/. Accessed 1 Dec 2016

  • Redpath DT, Rapson GL (2015) An extreme flood event initiates a decade of stand collapse in Beilschmiedia tawa forest, Turakina Valley, Rangitikei, New Zealand. N Z J Bot 53:38–59

    Article  Google Scholar 

  • Robinson CT, Uehlinger U (2008) Experimental floods cause ecosystem regime shift in a regulated river. Ecol Appl 18:511–526

    Article  PubMed  Google Scholar 

  • Rosemond AD, Mulholland PJ, Brawley SH (2000) Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores. Can J Fish Aquat Sci 57:66–75

    Article  Google Scholar 

  • Scrimgeour GJ, Davidson RJ, Davidson JM (1988) Recovery of benthic macroinvertebrate and epilithic communities following a large flood, in an unstable, braided, New Zealand river. N Z J Mar Fresh 22:337–344

    Article  Google Scholar 

  • Sedell JR, Reeves GH, Hauer FR, Stanford JA, Hawkins CP (1990) Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environ Manag 14:711–724

    Article  Google Scholar 

  • Singer GA, Battin TJ (2007) Anthropogenic subsidies alter stream consumer–resource stoichiometry, biodiversity, and food chains. Ecol Appl 17:376–389

    Article  PubMed  Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Spink A, Rogers S (1996) The effects of a record flood on the aquatic vegetation of the Upper Mississippi River System: some preliminary findings. Hydrobiologia 340:51–57

    Article  Google Scholar 

  • Stock B C, Semmens B X (2013) MixSIAR GUI user manual, version 1.0. Accessible online at: http://conserver.iugo-cafe.org/user/brice.semmens/MixSIAR. Accessed 5 Jan 2018

  • Takimoto G, Post DM (2013) Environmental determinants of food-chain length: a meta-analysis. Ecol Res 28:675–681

    Article  Google Scholar 

  • Terui A, Negishi JN, Watanabe N, Nakamura F (2018) Stream resource gradients drive consumption rates of supplemental prey in the adjacent riparian zone. Ecosystems 21:772–781

    Article  Google Scholar 

  • Townsend CR, Thompson RM, McIntosh AR, Kilroy C, Edwards E, Scarsbrook MR (1998) Disturbance, resource supply, and food-web architecture in streams. Ecol Lett 1:200–209

    Article  Google Scholar 

  • Walters AW, Post DM (2008) An experimental disturbance alters fish size structure but not food chain length in streams. Ecology 89:3261–3267

    Article  PubMed  Google Scholar 

  • Webster JR (2007) Spiraling down the river continuum: stream ecology and the U shaped curve. J N Am Benthol Soc 26:375–389

    Article  Google Scholar 

  • Weger SJ, Isaak DJ, Luce CH, Neville HM, Fausch KD, Dunham JB, Dauwalter DC, Young MK, Elsner MM, Rieman BE, Hamlet AF, Williams JE (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc Natl Acad Sci 108:14175–14180

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Agui and Obihiro Regional Office of Hokkaido Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism (MLIT), for their laboratory and field assistance. MLIT kindly led and financially supported the surveys on community structure, landscape structure, and channel form. We obtained a proper sampling permit issued by the government of Hokkaido for the use of electrofishing. The handling editor and two anonymous reviewers provided a helpful comment to improve the manuscript. This study is partly supported by the research fund for the Tokachi River provided by the Ministry of Land, Infrastructure, Transport, and Tourism of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjiro N. Negishi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negishi, J.N., Terui, A., Nessa, B. et al. High resilience of aquatic community to a 100-year flood in a gravel-bed river. Landscape Ecol Eng 15, 143–154 (2019). https://doi.org/10.1007/s11355-019-00373-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-019-00373-y

Keywords

Navigation