Skip to main content

Advertisement

Log in

Influence of age and planting density on the energy content of Eucalyptus benthamii, Eucalyptus dunnii and Eucalyptus grandis planted in Uruguay

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

According to some studies, the use of forest biomass for the generation of electric power and/or heat would result in a significant reduction in the emission of greenhouse gases. This would happen even in the case of soils substitution that currently have an agricultural use although its implementation would require more studies on the environmental impact that they could have in each particular case. In this study, the potential of electric power production is evaluated with several species of Eucalyptus planted in short rotation forestry systems. Three species were evaluated: E. benthamii, E. dunnii and E. grandis in four spacings: 3 × 1.5 m, 3 × 1 m, 3 × 0.75 m, 3 × 0.5 m, in two sites in the northern and western areas of Uruguay during a period of 76 and 75 months, respectively. During this period, the following parameters were evaluated: higher heating value, wood density, energy density and energy yield per hectare and per year. The results obtained show that the heating value changes slightly with the planting density and age. The average of higher heating values were 19,787 versus 19,454 J g−1 and 19,867 versus 9909 J g−1for the planting densities of 2220 versus 6660 trees ha−1 at Paysandú and Tacuarembó, respectively, at 76 months. Higher heating value increased from 19,665 to 19,745 J g−1 at 18 months to 19,740 and 19,914 J g−1 at 76 months for Paysandú and Tacuarembó, respectively. The wood density, depending on the site, is affected by age, species and planting density. On average, wood density increased (only at Paysandú) from 0.405 g cm−3 at age 18 months to 0.497 g cm−3 at age 76 months. There is a negative relationship between the heating value and the wood density. The energy yield is basically explained by the production of biomass. At Tacuarembó, a stronger relationship between energy production and planting density is obtained (1012 vs. 636 MW ha−1 for 6660 and 2220 trees ha−1, respectively) compared to the Paysandú site (1093 vs. 912 MW ha−1 for 6660 and 2220 trees ha−1, respectively). Harvest times are different in each site depending on the IMA values obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña E, Rubilar R, Cancino J, Albaugh TJ, Maier CA (2018) Economic assessment of Eucalyptus globulus short rotation energy crops under contrasting silvicultural intensities on marginal agricultural land. Land Use Policy 76:329–337. https://doi.org/10.1016/j.landusepol.2018.05.028

    Article  Google Scholar 

  • Backman ME, García de León J (2003) Correlations of pulp and paper properties at an early age and full. In: Tecnicelpa (ed) EUCEPA conference: sustainable development for the pulp and paper industry, Lisbon-Portugal, pp 108–112

  • Balloni EA, Simões JW (1980) O espaçamento de plantio e suas implicações silviculturais. IPEF Série Técnica 1:1–16

    Google Scholar 

  • Balmelli G, Resquin F (2002) Evaluación del crecimiento de especies de Eucalyptus en diferentes zonas de prioridad forestal. Tacuarembó, UY: INIA. 20 p. (Serie Aftercare Forestal INIA - JICA, 14). Aftercare del Proyecto de Mejoramiento Genético Forestal en el Uruguay (2000–2002)

  • Bentancor L, Hernández J, del Pino A, Califra A, Resquín F, González-Barrios P (2019) Evaluation of the biomass production, energy yield and nutrient removal of Eucalyptus dunnii Maiden grown in short rotation coppice under two initial planting densities and harvest systems. Biomass Bioenerg 122:165–174. https://doi.org/10.1016/j.biombioe.2019.01.019

    Article  Google Scholar 

  • Berndes G, Hoogwijk M, Van Den Broek T (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg 25:1–28. https://doi.org/10.1016/S0961-9534(02)00185-X

    Article  Google Scholar 

  • Brand MA (2010) Energia de biomassa florestal. Interciencia, Río de Janeiro, p 131

    Google Scholar 

  • Briseño-Uribe KC, Carrillo-Parra A, Bustamante V, González-Rodríguez H, Foroughbachk R (2015) Firewood production, yield and quality of charcoal from Eucalyptus camaldulensis and E. microtheca planted in the semiarid land of Northeast Mexico. Int J Green Energy 12:961–969. https://doi.org/10.1080/15435075.2014.891121

    Article  Google Scholar 

  • Brun E, Bersh A, Pereira F, Silva D, de Barba Y, Dorini Junior J (2018) Caracterização energética da madeira de três materiais genéticos de Eucalyptus sp. Floresta 48:87–92. https://doi.org/10.5380/rf.v48

    Article  Google Scholar 

  • Calonego FW, Severo ETD, Assi PP (2005) Mensuração do comprimento das fibras para a determinação da madeira juvenil em Eucalyptus citriodora. Scientia Forestalis 68:113–121

    Google Scholar 

  • Carmona R, Nuñez T, Alonso MF (2015) Biomass yield and quality of an energy dedicated crop of poplar (Populus spp.) clones in the Mediterranean zone of Chile. Biomass Bioenergy 74:96–102. https://doi.org/10.1016/j.biombioe.2015.01.004

  • Carvalho H, Oliveira R, Gomide J, Colodette J (1998) Efeito da idade de corte da madeira e de variáveis de refino nas propriedades da celulose kraft branqueada de eucalipto. In: ABTCP (ed) Congresso Anual de Celulose e ABTCP 31, São Paulo, Brazil, p 16

  • Cassidy M, Palmer G, Smith RGB (2013) The effect of wide initial spacing on wood properties in plantation grown Eucalyptus pilularis. New For 44:919–936. https://doi.org/10.1007/s11056-013-9385-5

    Article  Google Scholar 

  • Castaño JP, Ceroni A, Furest M, Aunchayna J, Bidegain R (2011) Caracterización agroclimáticadel Uruguay 1980–2009. Serie TécnicaI NIA. Montevideo, Uruguay 193, 33. http://www.ainfo.inia.uy/digital/bitstream/item/2538/1/18429021211104157pdf. Accessed 18 Jan 2018

  • Castro AFNM, Castro RVO, Oliveira ADC, dos Santos RC, Carvalho AMML, de Melo ICNA, Trugilho PF (2015) Correlations between age, wood quality and charcoal quality of eucalyptus clones. Árvore 40:551–560

    Article  Google Scholar 

  • de Carneiro A, Castro AFNM, Castro RVO, dos Santos RC, Ferreira LP, Damásio RAP, Vital BR (2014) Potencial energético da madeira de Eucalyptus sp. em função da idade e de diferentes materiais genéticos. Árvore 38:375–381

    Article  Google Scholar 

  • de Eufrade-Junior HJ, Guerra SPS, Sansígolo CA, Ballarin AW (2018) Management of Eucalyptus short-rotation coppice and its outcome on fuel quality. Renew Energy 121:309–314. https://doi.org/10.1016/j.renene.2018.01.033

    Article  Google Scholar 

  • De Lima EA, Damin H, Lavoranti OJ (2011) Caracterização dendroenergética de árvores de Eucalyptus benthamii. Pesquisa Florest Bras 31(65):9–17. https://doi.org/10.4336/2010.pfb.31.65.09

    Article  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230. https://doi.org/10.1016/j.pecs.2003.10.004

    Article  Google Scholar 

  • Dias Júnior FA, de Andrade AM, Soares VW, Costa Junior DS, Alves Ferreira DHA, dos Santos Leles PS (2015) Potencial energético de sete materiais genéticos de Eucalyptus cultivados no Estado do Rio de Janeiro. Energetic potential of seven Eucalyptus genetic materials planted in Rio de Janeiro State. Scientia Forestalis 43:833–843

    Article  Google Scholar 

  • Eloy E, Caron BO, Behling A, Elli EF (2015) Produtividade energética de espécies florestais em plantios de curta rotação. Ciência Rural 45:1424–1431

    Article  Google Scholar 

  • Eloy E, Da Silva DA, Schmidt D, Trevisan R, Caron BO, Elli E (2016) Effect of planting age and spacing on energy properties of Eucalyptus grandis W. Hill Ex Maiden1. Árvore 40:749–758

    Article  Google Scholar 

  • Erol M, Ku S (2010) Calorific value estimation of biomass from their proximate analyses data. Renew Energy 35:170–173. https://doi.org/10.1016/j.renene.2009.05.008

    Article  Google Scholar 

  • Eufrade Junior H, De Melo RX, Pereira Sartori MM, Guerra SP, Ballarin AW (2016) Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioenerg 90:15–21. https://doi.org/10.1016/j.biombioe.2016.03.037

    Article  Google Scholar 

  • Ferreira MC, Cavalcante R, Vinícius R, Castro O, Costa EDL, Pimenta AS (2017) Biomass and energy production at short rotation eucalyptus clonal plantations deployed in Rio Grande do Norte. Árvore 41:1–7

    Google Scholar 

  • Foelkel C (2015) Qualidade da Biomassa Florestal do Eucalipto para Fins Energéticos. Eucalyptus Newsletter 49:78–107

    Google Scholar 

  • Francescato V, Antonini E, Bergomi LZ (2008) MANUAL DE COMBUSTIBLES DE MDERA. Edited by Asociación Española de Valorización Energética de la Biomasa. AVEBIOM. Valladolid, España: Gráficas Germinal, S.C.L. http://www.avebiom.org

  • Gonzalez R, Treasure T, Wright J, Saloni D, Phillips R, Abt R, Jameel H (2011) Exploring the potential of Eucalyptus for energy production in the Southern United States: financial analysis of delivered biomass. Part I. Biomass Bioenergy 35:755–766. https://doi.org/10.1016/j.biombioe.2010.10.011

    Article  Google Scholar 

  • Guerra SPS, Garcia EA, Lanças KP, Rezende MA, Spinelli R (2014) Heating value of eucalypt wood grown on SRC for energy production. Fuel 137:360–363. https://doi.org/10.1016/j.fuel.2014.07.103

    Article  Google Scholar 

  • Hakamada R, Hubbard RM, Ferraz S, Stape JL, Lemos C (2017) Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South For. https://doi.org/10.2989/20702620.2016.1256041

    Article  Google Scholar 

  • Hansted A, Aguiar T, Tami G, Eliodoro V, Yamamoto H, Minoru F (2018) Use of a lignocellulosic residue as solid fuel: the effect of ash content in the energy potential. Ind Crops Prod 116:209–214. https://doi.org/10.1016/j.indcrop.2018.02.042

    Article  Google Scholar 

  • Jesus MS, Costa LJ, Ferreira JC, De Freitas FP, Santos LC, Rocha MFV (2017) Caracterização energética de diferentes espécies de eucalyptus. Floresta 47(2017):11–16. https://doi.org/10.5380/rf.v47i1.48418

    Article  Google Scholar 

  • Johnson JM, Coleman MD, Gesch R, Jaradat A, Mitchell R, Reicosky D (2007) Biomass-bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–28

    Google Scholar 

  • Kačík F, Ďurkovič J, Kačíková D (2012) Chemical profiles of wood components of poplar clones for their energy utilization. Energies 5:5243–5256. https://doi.org/10.3390/en5125243

    Article  Google Scholar 

  • Kumar R, Pandey KK, Chandrashekar N, Mohan S (2010) Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J For Res 21:514–516. https://doi.org/10.1007/s11676-010-0108-x

    Article  Google Scholar 

  • Kumar R, Pandey KK, Chandrashekar N, Mohan S (2011) Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenerg 35:1339–1344. https://doi.org/10.1016/j.biombioe.2010.12.031

    Article  Google Scholar 

  • Larson PR, Kretschmann DE, Iii AC, Isebrands JG (2001) Formation and properties of juvenile wood in southern pines a synopsis. Rhinelander, Wisconsin

    Book  Google Scholar 

  • Lemenih M, Bekele T (2004) Effect of age on caloric value and some mechanical properties of three Eucalyptus species grown in Ethiopia. Biomass Bioenergy 27:223–232. https://doi.org/10.1016/j.biombioe.2004.01.006

    Article  Google Scholar 

  • Leslie AD, Mencuccini M, Perks MP, Wilson ER (2019) A review of the suitability of eucalypts for short rotation forestry for energy in the UK. New For 0123456789:1–19. https://doi.org/10.1007/s11056-019-09717-w

    Article  Google Scholar 

  • Lopes ED, de Laia ML, dos Santos AS, Soares GM, Pinto Leite RW, Martins NDS (2017) Influência do espaçamento de plantio na produção energética de clones de Corymbia e Eucalyptus. Floresta 47:95–104. https://doi.org/10.5380/rf.v47i1.47141

    Article  Google Scholar 

  • Magalhães M, Carneiro A, Vital BR, De Souza MM, Fialho LDF (2017) Estimates of mass and energy of different genetic material Eucalyptus. Árvore 41:1–8

    Google Scholar 

  • Magnago LM, Arantes MDC, Vidaurre GB, Moulin JC, Trugilho PF (2016) Energy estimate and carbon stock in short-rotation eucalyptus stands. Cerne 22:527–534. https://doi.org/10.1590/01047760201622042209

    Article  Google Scholar 

  • Malan FS (1995) Eucalyptus improvement for lumber production. In: CSIR (ed) Seminário internacional de utilização da madeira de eucalipto para serraria. Pretoria, South Africa,pp 1–19

  • Malan FS, Hoon M (1992) Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. S Afr J 163:13–20. https://doi.org/10.1080/00382167.1992.9629362

    Article  Google Scholar 

  • MGAP (1976) Carta de reconocimiento de suelos del Uruguay a escala 1/1000.000 y clasificación de suelos del Uruguay. Montevideo, Uruguay

  • Mimms A, Kocurek MJ, Pyiatte JA, Wright EE (1993) Kraft Pulping. A compilation of notes. TAPPI, Atlanta, GA, USA, p 181

  • Moulin JC, Arantes MDC, Vidaurre GB, Paes JB, Carneiro ACO (2015) Efeito do espaçamento, da idade e da irrigação nos componentes químicos da madeira de Eucalipto. Árvore 39(1):199–208

    Article  Google Scholar 

  • Müller MD (2005) Produção de madeira para geração de energia elétrica numa plantação clonal de eucalipto em Itamarandiba, MG. Tese de Doutorado. Universidad Federal de Viçosa, Viçosa, MG, Brasil

  • Njakou Djomo SN, El Kasmioui O, De Groote T, Broeckx LS, Verlinden MS, Berhongaray G, Fichot R, Zona D, Dillen SY, King JS, Janssens IA, Ceulemans R (2013) Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation. Appl Energy 111:862–870. https://doi.org/10.1016/j.apenergy.2013.05.017

    Article  Google Scholar 

  • Nonhebel S (2002) Energy yields in intensive and extensive biomass production systems. Biomass Bioenergy 22:159–167

    Article  Google Scholar 

  • Nuñez-Regueira L, Proupín-Castañeras J, Rodrıguez-Añon J (2004) Energy evaluation of forest residues originated from shrub species in Galicia. Biores Technol 91:215–221. https://doi.org/10.1016/S0960-8524(03)00169-X

    Article  Google Scholar 

  • Oliveira J (1997) Caracterização da madeira de eucalipto para a construção civil. Tese de Doutorado. Escola Politécnica de São Carlos. Universidade de São Paulo, Brasil

  • Pereira JCD, Sturion JA, Higa AR, Higa RCV, Shimizu JY (2000) Características da madeira de algumas espécies de eucalipto plantadas no Brasil. Embrapa Florestas 38:1–113

    Google Scholar 

  • Pérez S, Renedo CJ, Ortiz A, Man M (2008) Energy potential of waste from 10 forest species in the North of Spain (Cantabria). Bioresour Technol 99:6339–6345. https://doi.org/10.1016/j.biortech.2007.12.014

    Article  PubMed  Google Scholar 

  • Pérez S, Renedo CJ, Ortiz A, Mañana M, Delgado F, Tejedor C (2011) Energetic density of different forest species of energy crops in Cantabria (Spain). Biomass Bioenerg 35:4657–4664. https://doi.org/10.1016/j.biombioe.2011.09.008

    Article  Google Scholar 

  • Pérez S, Renedo CJ, Ortiz A, Delgado F, Fernández I (2014) Energy potential of native shrub species in northern Spain. Renew Energy 62:79–83. https://doi.org/10.1016/j.renene.2013.06.048

    Article  Google Scholar 

  • Protásio TDP, Neves TA, Dos Reis AA, Trugilho PF (2014) Effect of age and clone on the quality of Eucalyptus spp. wood aiming. Ciência Florestal 24:465–477

    Article  Google Scholar 

  • Quirino WF, Do Vale AT, De Andrade APA, Abreu VLS, Azevedo ACDS (2005) Poder Calorífico Da Madeira E De Materiais Ligno-Celulósicos. Revista Da Madeira 89:100–106

    Google Scholar 

  • R Core Development Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Resquin F, Mello JD, Fariña I, Mieres J, Assandri L (2007) Caracterización de la celulosa de especies del género Eucalyptus plantadas en Uruguay Montevideo (Uruguay): INIA. p 84 (INIA Serie Técnica; 152). http://www.inia.uy/Publicaciones/Documentos%20compartidos/18429160709160425.pdf

  • Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Rachid Casnati C (2019) Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manag 438:63–74. https://doi.org/10.1016/j.foreco.2019.02.007

    Article  Google Scholar 

  • Rocha EPA, Gomes BF, Sermyagina E, Cardoso M, Colodette JL (2015) An analysis of Brazilian biomass focusing on thermochemical conversion for energy production. Energy Fuels 29(12):7975–7984. https://doi.org/10.1021/acs.energyfuels.5b01945

    Article  Google Scholar 

  • Rocha PRGH, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT (2016) Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J Trop For Sci 28:243–248

    Google Scholar 

  • Rodrigues A, Bordado J, Mateus M (2010) An evaluation of SRCS as a potential carbon neutral source of biomass for energy and chemicals. Int J Energy Environ Econ 23(4–5):479–544

    Google Scholar 

  • Santana WMS (2009) Crescimento, produção e propriedades da madeira de um clone de Eucalyptus grandis e E. urophylla com enfoque energético. Dissertação de Mestrado. Universidade Federal de Lavras, Lavras, MG, Brasil

  • Santos D (2010) Parâmetros de qualidade da madeira e do carvão vegetal de clones de eucalipto. Universidade Federal de Lavras, Lavras, MG, Brasil, Tese de Doutorado

    Google Scholar 

  • Santos MD (2011) Efeito do espaçamento de plantio na biomassa do fuste de um clone híbrido interespecífico de Eucalyptus grandis e Eucalyptus urophylla. Dissertação de Mestrado. Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, São Paulo, Brasil

  • Santos DRC, Carneiro ACO, Pimenta AS, Castro RVO, Marinho IV, Trugilho PF, Alves ICN, Castro AFNM (2013) Potencial energético da madeira de espécies oriundas de plano de manejo florestal no estado do Rio Grande do Norte. Ciência Florestal 23(2):491–502

    Article  Google Scholar 

  • Santos R, Carneiro Vital BR, Castro R, Vidaurre G, Trugilho PF, Castro A (2016) Influência das propriedades químicas e da relação siringil/guaiacil da madeira de eucalipto na produção de carvão vegetal. Ciência Florestal 26:657–669

    Article  Google Scholar 

  • Senelwa K, Sims REH (1999) Fuel characteristics of short rotation forest biomass. Biomass Bioenerg 17:127–140

    Article  Google Scholar 

  • Soares VC, Bianchi ML, Trugilho PF, Júnior A, Höfler J (2014) Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Árvore 38:543–549

    Article  Google Scholar 

  • Soares VC, Bianchi ML, Trugilho PF, Höfler J, Pereira AJ (2015) Análise das propriedades da madeira e do carvão vegetal de híbridos de eucalipto em três idades. Cerne 2:191–197. https://doi.org/10.1590/01047760201521021294

    Article  Google Scholar 

  • Souza R (1989) Efeito de dois espaçamentos na produção em peso e volume de Eucalyptus grandis (W. Hill ex Maiden). Dissertação de Mestrado. Universidade Federal de Viçosa, Vicosa, MG, Brasil

  • Trugilho PF (2009) Densidade básica e estimativa de massa seca e de lignina na madeira em espécies de Eucalyptus. Ciênc Agrotec 33:1228–1239

    Article  Google Scholar 

  • Trugilho PF, Tarcício LJ, Mendes LM (1996) Influência da idade nas características físico-químicas e anatômicas da madeira de Eucalyptus saligna. Cerne. 2:94–111

    Google Scholar 

  • Villanueva M, Proupín J, Rodríguez-Añón JA, Fraga-Grueiro L, Salgado J, Barros N (2011) Energetic characterization of forest biomass by calorimetry and thermal analysis. J Therm Anal Calorim 104:61–67. https://doi.org/10.1007/s10973-010-1177-y

    Article  Google Scholar 

  • Vital BR, Della Lucia RM (1987) Efeito do espaçamento na produção em peso e na qualidade da madeira de Eucalyptus grandis e Eucalyptus urophylla aos 52 meses de idade. Árvore 11:132–145

    Google Scholar 

  • Walter A, Dolzan P, Piacente E (2006) Biomass energy and bioenergy trade: historic developments in Brazil and current opportunities. Country report: Brazil—task 40—sustainable bio-energy trade; securing supply and demand final version. Unicamp, Campinas—Brazil, p 36

  • Wionzek F (2014) Influência do espaçamento nas propriedades energéticas e biomassa de Eucalyptus benthamii Maiden et Cambage. Dissertação de Mestrado. Universidade Estadual do Centro-Oeste, PR, Brasil

  • Wu S, Zhu Y, Xu J, Lu Z, Chen G, Song P, Guo W (2017) Genetic variation and genetic gain for energy production, growth traits and wood properties in Eucalyptus hybrid clones in China. Aust For 80:57–65. https://doi.org/10.1080/00049158.2016.1275948

    Article  Google Scholar 

  • Zanuncio JAV, Carvalho AG, Trugiho PF, Monteiro TC (2014) Extractive and energetic properties of wood and charcoal. Árvore 38:369–374

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Institute of Agricultural Research (INIA) and the National Agency of Research and Innovation (ANII) through the grant FSE 1 2011 15615 (Evaluación productiva y Ambiental de plantaciones forestales para la generación de Bioenergía). The authors thank the Forestal Oriental company for its collaboration in the field experiments and planting. We thank Dr. David Walker for revisions of the written English in different versions of this manuscript, and the anonymous referees for their valuable comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Resquin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resquin, F., Navarro-Cerrillo, R.M., Carrasco-Letelier, L. et al. Influence of age and planting density on the energy content of Eucalyptus benthamii, Eucalyptus dunnii and Eucalyptus grandis planted in Uruguay. New Forests 51, 631–655 (2020). https://doi.org/10.1007/s11056-019-09749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-019-09749-2

Keywords

Navigation