Skip to main content

Advertisement

Log in

Estimating the Hydraulic Conductivity of Deep Fractured Rock Strata from High-pressure Injection Tests

Abschätzung der hydraulischen Leitfähigkeit von tiefen Kluftgesteinen mittels Hochdruckinjektionstests

Estimación de la conductividad hidráulica de estratos de roca fracturada profunda a partir de pruebas de inyección a alta presión

通过高压注入试验估算深部裂隙岩层的导水率

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Deep coal mining in the Yanzhou coalfield is threatened by a confined Ordovician limestone aquifer where water pressure exceeds 10 MPa. High-pressure injection tests are widely used to characterize the hydraulic properties of water-resisting fractured rock strata under such conditions, although estimating hydraulic conductivity remains an issue. This paper presents an approach to estimate it, using data from several high-pressure injection tests by accounting for the flow conditions. Typical PQ curves obtained from the injection tests were summarized and divided into Darcian and non-Darcian flow phases, and an equation was proposed to estimate the hydraulic conductivity of fractured rocks. The hydraulic conductivity is pressure dependent and increased by injection pressure in the non-Darcian flow phase, due to hydraulic fracturing. As one would expect, the hydraulic conductivity estimated using the new equation was much greater than that estimated using Darcy’s law.

Zusammenfassung

Der Kohleabbau im Yanzhou Kohlefeld ist durch einen gespannten Kalksteingrundwasserleiter (Ordovizium) mit einem Wasserdruck von über 10 MPa gefährdet. Zur Untersuchung der hydraulischen Eigenschaften wasserbeständiger, geklüfteter Gesteinsschichten werden unter den genannten Bedingungen häufig Hochdruckinjektionstests verwendet. Dennoch bleibt die Abschätzung der hydraulischen Leitfähigkeit ein Problem. Dieser Artikel stellt einen Ansatz zur Abschätzung der hydraulischen Leitfähigkeit mit Daten aus verschiedenen Hochdruckinjektionstests vor. Typische P-Q-Kurven aus Injektionstests wurden zusammengefasst und in Phasen mit Darcy-Strömung und mit Nicht-Darcy-Strömung unterteilt. Zur Abschätzung der hydraulischen Leitfähigkeit von Kluftgesteinen wurde eine Gleichung aufgestellt. Die hydraulische Leitfähigkeit ist druckabhängig und steigt mit zunehmendem Injektionsdruck in der Phase der Nicht-Darcy-Strömung durch hydraulische Kluftbildung an. Die mit der neuen Gleichung ermittelte hydraulische Leitfähigkeit ist erwartungsgemäß höher als die Abschätzung mit Hilfe des Darcy-Gesetzes.

Resumen

La minería profunda de carbón en el campo de Yanzhou está amenazada por un acuífero de piedra caliza ordovícico confinado donde la presión del agua supera los 10 MPa. Las pruebas de inyección a alta presión se utilizan ampliamente para caracterizar las propiedades hidráulicas de los estratos de roca fracturados resistentes al agua en tales condiciones, aunque la estimación de la conductividad hidráulica sigue siendo un problema. Este trabajo presenta un enfoque para estimarlo utilizando datos de varias pruebas de inyección de alta presión al considerar las condiciones de flujo. Las curvas P-Q típicas obtenidas de las pruebas de inyección se resumieron y dividieron en fases de flujo Darciano y no Darciano y se propuso una ecuación para estimar la conductividad hidráulica de las rocas fracturadas. La conductividad hidráulica depende de la presión y se incrementa por la presión de inyección en la fase de flujo no Darciano debido a la fracturación hidráulica. Como era de esperar, la conductividad hidráulica estimada utilizando la nueva ecuación fue mucho mayor que la estimada utilizando la ley de Darcy.

抽象

兖州煤田大采深煤炭开采受水压超过10MPa以上的奥陶系灰岩承压含水层威胁。目前广泛采用高压注水试验来研究阻水裂隙岩层的水力学性能,但目前阻水岩层渗透系数估算仍然是一个难题。提出了一种利用高压注入试验数据估算渗透系数的方法。依据注水试验的典型P-Q曲线,将注水试验划分为达西流和非达西流两个阶段,提出了一个计算裂隙岩体渗透系数的方程。结果发现渗透系数随水压力变化;由于水力压裂作用,渗透系数随非达西流阶段的注水压力增大而增大。因此,用新方程估算的渗透系数远大于使用达西定律的估算值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angulo B, Morales T, Uriarte JA, Antigüedad I (2011) Hydraulic conductivity characterization of a karst recharge area using water injection tests and electrical resistivity logging. Eng Geol 117:90–96

    Article  Google Scholar 

  • Bai H, Ma D, Chen Z (2013) Mechanical behavior of groundwater seepage in karst collapse pillars. Eng Geol 164:101–106

    Article  Google Scholar 

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804

    Article  Google Scholar 

  • Bukowski P (2011) Water hazard assessment in active shafts in Upper Silesian coal basin mines. Mine Water Environ 30:302–311

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Rutqvist J, Tsang CF, Thoraval A (2006) Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. Int J Rock Mech Min Sci 43(7):1062–1082

    Article  Google Scholar 

  • Chen YF, Hu SH, Hu R, Zhou CB (2015) Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an izbash’s law-based empirical model. Water Resour Res 51(4):2096–2118

    Article  Google Scholar 

  • Cornet FH, Doan ML, Fontbonne F (2003) Electrical imaging and hydraulic testing for a complete stress determination. Int J Rock Mech Min Sci 40:1225–1241

    Article  Google Scholar 

  • Derode B, Cappa F, Guglielmi Y, Rutqvist J (2013) Coupled seismo-hydromechanical monitoring of inelastic effects on injection-induced fracture permeability. Int J Rock Mech Min Sci 61:266–274

    Article  Google Scholar 

  • Ding L, Dai Z, Guo Q, Yu G (2017) Effects of in situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry. Appl Energy 187:627–639

    Article  Google Scholar 

  • Fernandez G, Moon J (2010) Excavation-induced hydraulic conductivity reduction around a tunnel-part 1: guideline for estimate of ground water inflow rate. Tunn Undergr Space Technol 25:560–566

    Article  Google Scholar 

  • Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Dtsch Ing 45:1782–1788

    Google Scholar 

  • Guglielmi Y, Cappa F, Avouac J, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection–induced aseismic slip. Science 348:1224–1226

    Article  Google Scholar 

  • Hamm SY, Kim M, Cheong JY, Kim JY, Son M, Kim TW (2007) Relationship between hydraulic conductivity and fracture properties estimated from packer tests and borehole data in a fractured granite. Eng Geol 92:73–87

    Article  Google Scholar 

  • He J, Lin C, Li X, Zhang Y, Chen Y (2017) Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores. Fuel 208:65–70

    Article  Google Scholar 

  • Huang Z, Jiang Z, Zhu S, Qian Z, Cao D (2014) Characterizing the hydraulic conductivity of rock formations between deep coal and aquifers using injection tests. Int J Rock Mech Min Sci 71:12–18

    Article  Google Scholar 

  • Huang Z, Jiang Z, Fu J, Cao D (2015) Experimental measurement on the hydraulic conductivity of deep low-permeability rock. Arab J Geosci 8:5389–5396

    Article  Google Scholar 

  • Huang Z, Jiang ZQ, Zhu SY, Wu XS, Yang LN, Guan YZ (2016) Influence of structure and water pressure on the hydraulic conductivity of the rock mass around underground excavations. Eng Geol 202:74–84

    Article  Google Scholar 

  • Huang Z, Li X, Li S, Zhao K, Zhang R (2018) Investigation of the hydraulic properties of deep fractured rocks around underground excavations using high-pressure injection tests. Eng Geol 245:180–191

    Article  Google Scholar 

  • Huang Z, Li X, Li S, Zhao K, Xu H (2019) Variations in hydraulic properties of sedimentary rocks induced by fluid injection: the effect of water pressure. Pol J Environ Stud 28(2):647–655

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. Waterw. Exp Stn Bull 36, U.S. Army Corps Eng 50, Vicksburg. Mississippi

  • Izbash SV, Leleeva NM (1971) Aspects of turbulent seepage flow in a fill. Power Tech Eng 5(5):462–465

    Google Scholar 

  • Jiang Z, Fu S, Li S, Hu D, Feng S (2007) High pressure permeability test on hydraulic tunnel with steep obliquity faults under high pressure. Chin J Rock Mech Eng 26(11):2318–2323

    Google Scholar 

  • Jiang ZM, Chen SH, Feng SR, Zhang XM (2010) Study on the method for evaluating rock mass permeability coefficient. J Hydraul Eng 41(10):1228–1233

    Google Scholar 

  • Lee H, Ong SH (2018) Estimation of in situ stresses with hydro-fracturing tests and a statistical method. Rock Mech Rock Eng 51:779–799

    Article  Google Scholar 

  • Liang DX, Jiang ZQ, Guan YZ (2015) Field research: measuring water pressure resistance in a fault-induced fracture zone. Mine Water Environ 34(3):320–328

    Article  Google Scholar 

  • Lo HC, Chen PJ, Chou PY, Hsu SM (2014) The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition. J Appl Geophys 105:248–258

    Article  Google Scholar 

  • Ma D, Rezania M, Yu HS, Bai HB (2017) Variations of hydraulic properties of granular sandstones during water inrush: effect of small particle migration. Eng Geol 217:61–70

    Article  Google Scholar 

  • Meng Z, Li G, Xie X (2012) A geological assessment method of floor water inrush risk and its application. Eng Geol 143–144:51–60

    Article  Google Scholar 

  • Meng R, Hu S, Chen Y, Zhou C (2014) Permeability of non-Darcian flow in fractured rock mass under high seepage pressure. Chin J Rock Mech Eng 33(9):1756–1764

    Google Scholar 

  • Neuman SP (2005) Trends, prospects and challenges in fractured rock hydrology. Hydrogeol J 13(1):124–147

    Article  Google Scholar 

  • Peng SP, Zhang JC (2007) Engineering geology for underground rocks. Springer, Berlin

    Google Scholar 

  • Quinn PM, Cherry JA, Parker BL (2011) Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. Water Resour Res 47:W09533. https://doi.org/10.1029/2010WR009681

    Article  Google Scholar 

  • Rutqvist J, Noorishad J, Tsang C, Stephansson O (1998) Determination of fracture storativity in hard rocks using high-pressure injection testing. Water Resour Res 34(10):2551–2560

    Article  Google Scholar 

  • Yamada H, Nakamura F, Watanabe Y, Murakami M, Nogami T (2005) Measuring hydraulic permeability in streambed using the packer test. Hydrol Process 19(13):2507–2524

    Article  Google Scholar 

  • Zhang J, Shen B (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41:629–639

    Article  Google Scholar 

  • Zhang Y, Shao W, Zhang M, Li H, Yin S, Xu Y (2016) Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables. Accid Anal Prev 92:189–201

    Article  Google Scholar 

  • Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci 80:202–218

    Article  Google Scholar 

  • Zhou CB, Zhao XJ, Chen YF, Liao Z, Liu MM (2018) Interpretation of high pressure pack tests for design of impervious barriers under high-head conditions. Eng Geol 234:112–121

    Article  Google Scholar 

  • Zhu YWS, Zhang T (2018) Permeability of the coal seam floor rock mass in a deep mine based on in situ water injection tests. Mine Water Environ 37:724–733

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the editors and anonymous reviewers for their valuable and constructive comments in improving this paper. The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (41702326), the National Postdoctoral Program for Innovative Talents (BX201700113), the China Postdoctoral Science Foundation (2017M620205), the Natural Science Foundation of Jiangxi Province (20171BAB206022), the State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK1703), and the Innovative Experts, Long-term Program of Jiangxi Province (jxsq2018106049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Huang or Kui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Li, S., Zhao, K. et al. Estimating the Hydraulic Conductivity of Deep Fractured Rock Strata from High-pressure Injection Tests. Mine Water Environ 39, 112–120 (2020). https://doi.org/10.1007/s10230-019-00646-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-019-00646-w

Keywords

Navigation