Skip to main content

Advertisement

Log in

MicroRNAs as the actors in the atherosclerosis scenario

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis is considered as the most common cardiovascular disease and a leading cause of global mortality, which develops through consecutive steps. Various cellular and molecular biomarkers such as microRNAs are identified to be involved in atherosclerosis progression. MicroRNAs are a group of endogenous, short, non-coding RNAs, which are able to bind to specific sequences on target messenger RNAs and thereby modulate gene expression post-transcriptionally. MicroRNAs are key players in wide range of biological processes; thus, their expression level is regulated in pathophysiological conditions. Ample evidences including in vitro and in vivo studies approved a critical role of microRNAs in epigenetic and the sequential processes of atherosclerosis from risk factors to plaque formation, progression, and rupture. Based on these findings, miRNAs seems to be promising candidates for therapeutic approach. This review summarizes the role of miRNAs in atherosclerosis development, epigenetic, and therapy. Moreover, the application of exosomes in miRNA delivery, and/or their prognostic and diagnostic values are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ailawadi S, Wang X, Gu H, Fan GC (2015) Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta 1852(1):1–11. https://doi.org/10.1016/j.bbadis.2014.10.008

    Article  PubMed  CAS  Google Scholar 

  2. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A (2011) Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 31(5):969–979. https://doi.org/10.1161/ATVBAHA.110.207415

    Article  PubMed  CAS  Google Scholar 

  3. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW (2015a) miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 21(5):307–318. https://doi.org/10.1016/j.molmed.2015.02.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Arner E, Mejhert N, Kulyte A, Balwierz PJ, Pachkov M, Cormont M et al (2012) Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61(8):1986–1993. https://doi.org/10.2337/db11-1508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Asgeirsdottir SA, van Solingen C, Kurniati NF, Zwiers PJ, Heeringa P, van Meurs M et al (2012) MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am J Physiol Ren Physiol 302(12):F1630–F1639. https://doi.org/10.1152/ajprenal.00400.2011

    Article  CAS  Google Scholar 

  6. Barry OP, Pratico D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102(1):136–144. https://doi.org/10.1172/JCI2592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 189(8):4175–4181. https://doi.org/10.4049/jimmunol.1201516

    Article  PubMed  CAS  Google Scholar 

  8. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22(4):336–345. https://doi.org/10.1038/11905

    Article  PubMed  CAS  Google Scholar 

  9. Cao D, Hu L, Lei D, Fang X, Zhang Z, Wang T, Zhong L (2015) MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro. Biochem Biophys Res Commun 457(1):1–6. https://doi.org/10.1016/j.bbrc.2014.11.085

    Article  PubMed  CAS  Google Scholar 

  10. Cervio E, Barile L, Moccetti T, Vassalli G (2015) Exosomes for intramyocardial intercellular communication. Stem Cells Int 2015:482171. https://doi.org/10.1155/2015/482171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chang SH, Hla T (2011) Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med 17(11):650–658. https://doi.org/10.1016/j.molmed.2011.06.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chen KC, Juo SH (2012) MicroRNAs in atherosclerosis. Kaohsiung J Med Sci 28(12):631–640. https://doi.org/10.1016/j.kjms.2012.04.001

    Article  PubMed  CAS  Google Scholar 

  13. Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C (2009) MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 83(1):131–139. https://doi.org/10.1093/cvr/cvp121

    Article  PubMed  CAS  Google Scholar 

  14. Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, Dai CY, Juo SH (2011) OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J 25(5):1718–1728. https://doi.org/10.1096/fj.10-174904

    Article  PubMed  CAS  Google Scholar 

  15. Chen Z, Wen L, Martin M, Hsu CY, Fang L, Lin FM, Shyy JY (2015) Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation 131(9):805–814. https://doi.org/10.1161/CIRCULATIONAHA.114.013675

    Article  PubMed  CAS  Google Scholar 

  16. Cheng C, Wang Q, You W, Chen M, Xia J (2014) MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One 9(2):e88566. https://doi.org/10.1371/journal.pone.0088566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495. https://doi.org/10.1161/CIRCRESAHA.111.247452

    Article  PubMed  CAS  Google Scholar 

  18. Cuchel M, Rader DJ (2006) Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113(21):2548–2555. https://doi.org/10.1161/CIRCULATIONAHA.104.475715

    Article  PubMed  Google Scholar 

  19. Daniel JM, Penzkofer D, Teske R, Dutzmann J, Koch A, Bielenberg W, Sedding DG (2014) Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res 103(4):564–572. https://doi.org/10.1093/cvr/cvu162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Darzi L, Boshtam M, Shariati L, Kouhpayeh S, Gheibi A, Mirian M, Tabatabaiefar MA (2017) The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy. Res Pharm Sci 12(6):456–464. https://doi.org/10.4103/1735-5362.217426

    Article  PubMed  PubMed Central  Google Scholar 

  21. Das A, Ganesh K, Khanna S, Sen CK, Roy S (2014) Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 192(3):1120–1129. https://doi.org/10.4049/jimmunol.1300613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Fernandez-Hernando C (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108(22):9232–9237. https://doi.org/10.1073/pnas.1102281108

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, van Balkom BW (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles:1. https://doi.org/10.3402/jev.v1i0.18396

    Article  CAS  Google Scholar 

  24. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF (2010) microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 30(8):1562–1568. https://doi.org/10.1161/ATVBAHA.110.206201

    Article  PubMed  CAS  Google Scholar 

  25. Di Gregoli K, Jenkins N, Salter R, White S, Newby AC, Johnson JL (2014) MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol 34(9):1990–2000. https://doi.org/10.1161/ATVBAHA.114.304088

    Article  PubMed  CAS  Google Scholar 

  26. Donners MM, Wolfs IM, Stoger LJ, van der Vorst EP, Pottgens CC, Heymans S, de Winther MP (2012) Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One 7(4):e35877. https://doi.org/10.1371/journal.pone.0035877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, Fan D (2014) MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 34(4):759–767. https://doi.org/10.1161/ATVBAHA.113.302701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Tousoulis D (2015) The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment. Atherosclerosis 241(2):624–633

    Article  CAS  Google Scholar 

  29. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Kauppinen S (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162. https://doi.org/10.1093/nar/gkm1113

    Article  PubMed  CAS  Google Scholar 

  30. Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30. https://doi.org/10.1016/j.vph.2015.02.008

    Article  CAS  Google Scholar 

  31. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98. https://doi.org/10.1016/j.cmet.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  32. Fang Y, Davies PF (2012) Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 32(4):979–987. https://doi.org/10.1161/ATVBAHA.111.244053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF (2010) MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A 107(30):13450–13455. https://doi.org/10.1073/pnas.1002120107

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feinberg MW, Moore KJ (2016) MicroRNA Regulation of Atherosclerosis. Circ Res 118(4):703–720. https://doi.org/10.1161/CIRCRESAHA.115.306300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Filatova EV, Alieva A, Shadrina MI, Slominsky PA (2012) MicroRNAs: possible role in pathogenesis of Parkinson’s disease. Biochemistry (Mosc) 77(8):813–819. https://doi.org/10.1134/S0006297912080020

    Article  CAS  Google Scholar 

  36. Gao Y, Peng J, Ren Z, He NY, Li Q, Zhao XS, Liu LS (2016) Functional regulatory roles of microRNAs in atherosclerosis. Clin Chim Acta 460:164–171. https://doi.org/10.1016/j.cca.2016.06.044

    Article  PubMed  CAS  Google Scholar 

  37. Ghorpade DS, Leyland R, Kurowska-Stolarska M, Patil SA, Balaji KN (2012) MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 32(12):2239–2253. https://doi.org/10.1128/MCB.06597-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Giral H, Kratzer A, Landmesser U (2016) MicroRNAs in lipid metabolism and atherosclerosis. Best Pract Res Clin Endocrinol Metab 30(5):665–676. https://doi.org/10.1016/j.beem.2016.11.010

    Article  PubMed  CAS  Google Scholar 

  39. Goedeke L, Rotllan N, Canfran-Duque A, Aranda JF, Ramirez CM, Araldi E, Fernandez-Hernando C (2015a) MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 21(11):1280–1289. https://doi.org/10.1038/nm.3949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Goedeke L, Rotllan N, Ramirez CM, Aranda JF, Canfran-Duque A, Araldi E, Fernandez-Hernando C (2015b) miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis 243(2):499–509. https://doi.org/10.1016/j.atherosclerosis.2015.09.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC (2011) miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 179(4):1594–1600. https://doi.org/10.1016/j.ajpath.2011.06.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29(4):431–438. https://doi.org/10.1161/ATVBAHA.108.179564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y, Zeng Q (2010) miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol Cell Biol 88(5):555–564. https://doi.org/10.1038/icb.2010.16

    Article  PubMed  CAS  Google Scholar 

  44. Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Masters SL (2012) Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol 189(8):3795–3799. https://doi.org/10.4049/jimmunol.1200312

    Article  PubMed  CAS  Google Scholar 

  45. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695. https://doi.org/10.1056/NEJMra043430

    Article  PubMed  CAS  Google Scholar 

  46. Hao XZ, Fan HM (2017) Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur Rev Med Pharmacol Sci 21(11):2725–2733

    PubMed  Google Scholar 

  47. Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ (2010) Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 30(10):1990–1997. https://doi.org/10.1161/ATVBAHA.110.211706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol 233(3):2116–2132. https://doi.org/10.1002/jcp.25930

    Article  PubMed  CAS  Google Scholar 

  49. Hosin AA, Prasad A, Viiri LE, Davies AH, Shalhoub J (2014) MicroRNAs in atherosclerosis. J Vasc Res 51(5):338–349. https://doi.org/10.1159/000368193

    Article  PubMed  CAS  Google Scholar 

  50. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67(1):129–139. https://doi.org/10.1007/s13105-010-0050-6

    Article  PubMed  CAS  Google Scholar 

  51. Huber HJ, Holvoet P (2015) Exosomes: emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Curr Opin Lipidol 26(5):412–419. https://doi.org/10.1097/MOL.0000000000000214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S, Paulaitis ME, Piper MG, Marsh CB (2013) Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121(6):984–995. https://doi.org/10.1182/blood-2011-08-374793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100(11):1579–1588. https://doi.org/10.1161/CIRCRESAHA.106.141986

    Article  PubMed  CAS  Google Scholar 

  54. Jiang Y, Wang HY, Li Y, Guo SH, Zhang L, Cai JH (2014) Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases. Sci Rep 4:5026. https://doi.org/10.1038/srep05026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129. https://doi.org/10.1038/nature06607

    Article  PubMed  CAS  Google Scholar 

  56. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438(7068):685–689. https://doi.org/10.1038/nature04303

    Article  PubMed  CAS  Google Scholar 

  57. Kucher AN, Nazarenko MS, Markov AV, Koroleva IA, Barbarash OL (2017) Variability of Methylation Profiles of CpG Sites in microrNA Genes in Leukocytes and Vascular Tissues of Patients with Atherosclerosis. Biochemistry (Mosc) 82(6):698–706. https://doi.org/10.1134/S0006297917060062

    Article  CAS  Google Scholar 

  58. Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15. https://doi.org/10.1016/j.tips.2007.10.014

    Article  PubMed  CAS  Google Scholar 

  59. Kulyte A, Belarbi Y, Lorente-Cebrian S, Bambace C, Arner E, Daub CO et al (2014) Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes 63(4):1248–1258. https://doi.org/10.2337/db13-0702

    Article  PubMed  CAS  Google Scholar 

  60. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226(4):1035–1043. https://doi.org/10.1002/jcp.22422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG (2010) MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 11(9):799–805. https://doi.org/10.1038/ni.1918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li T, Cao H, Zhuang J, Wan J, Guan M, Yu B et al (2011) Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 412(1-2):66–70. https://doi.org/10.1016/j.cca.2010.09.029

    Article  PubMed  CAS  Google Scholar 

  63. Li X, Kong D, Chen H, Liu S, Hu H, Wu T, Wang J, Chen W, Ning Y, Li Y, Lu Z (2016) miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep. 6. https://doi.org/10.1038/srep21789

  64. Liu X, Cheng Y, Yang J, Xu L, Zhang C (2012) Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol 52(1):245–255. https://doi.org/10.1016/j.yjmcc.2011.11.008

    Article  PubMed  CAS  Google Scholar 

  65. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, Steer BM, Ingram AJ, Gupta M, al-Omran M, Teoh H, Marsden PA, Verma S (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126(11 Suppl 1):S81–S90. https://doi.org/10.1161/CIRCULATIONAHA.111.084186

    Article  PubMed  CAS  Google Scholar 

  66. Lu M, Yuan S, Li S, Li L, Liu M, Wan S (2019) The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application. J Cardiovasc Transl Res 12(1):68–74. https://doi.org/10.1007/s12265-018-9796-y

    Article  PubMed  Google Scholar 

  67. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. https://doi.org/10.1038/35025203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Cao X (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 12(9):861–869. https://doi.org/10.1038/ni.2073

    Article  PubMed  CAS  Google Scholar 

  69. Madrigal-Matute J, Rotllan N, Aranda JF, Fernández-Hernando C (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15(5):322

    Article  CAS  Google Scholar 

  70. Maes OC, Sarojini H, Wang E (2009) Stepwise upregulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 221(1):109–119. https://doi.org/10.1002/jcp.21834

    Article  PubMed  CAS  Google Scholar 

  71. Mahley RW, Huang Y, Weisgraber KH (2006) Putting cholesterol in its place: apoE and reverse cholesterol transport. J Clin Invest 116(5):1226–1229. https://doi.org/10.1172/JCI28632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Federici M (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532. https://doi.org/10.1161/CIRCULATIONAHA.109.864629

    Article  PubMed  CAS  Google Scholar 

  73. Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161(8):4382–4387

    PubMed  CAS  Google Scholar 

  74. Mocharla P, Briand S, Giannotti G, Dorries C, Jakob P, Paneni F, Landmesser U (2013) AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121(1):226–236. https://doi.org/10.1182/blood-2012-01-407106

    Article  PubMed  CAS  Google Scholar 

  75. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569. https://doi.org/10.1126/science.1189123

    Article  PubMed  CAS  Google Scholar 

  76. Navickas R, Gal D, Laucevicius A, Taparauskaite A, Zdanyte M, Holvoet P (2016) Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res 111(4):322–337. https://doi.org/10.1093/cvr/cvw174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Schober A (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122(11):4190–4202. https://doi.org/10.1172/JCI61716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Neth P, Nazari-Jahantigh M, Schober A, Weber C (2013) MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 99(2):294–303. https://doi.org/10.1093/cvr/cvt096

    Article  PubMed  CAS  Google Scholar 

  79. Newby AC (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108–2114. https://doi.org/10.1161/ATVBAHA.108.173898

    Article  PubMed  CAS  Google Scholar 

  80. Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, Moore KJ (2017) microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arterioscler Thromb Vasc Biol 37(6):1058–1067. https://doi.org/10.1161/ATVBAHA.116.308916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zen K (2014) Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 192(1):437–446. https://doi.org/10.4049/jimmunol.1301790

    Article  PubMed  CAS  Google Scholar 

  82. Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S, Kovanen PT, Eklund KK (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 5(7):e11765. https://doi.org/10.1371/journal.pone.0011765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Fernandez-Hernando C (2011) MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 31(11):2707–2714. https://doi.org/10.1161/ATVBAHA.111.232066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rautou PE, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, Vion AC, Nalbone G, Castier Y, Leseche G, Lehoux S, Tedgui A, Boulanger CM (2011) Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 108(3):335–343. https://doi.org/10.1161/CIRCRESAHA.110.237420

    Article  PubMed  CAS  Google Scholar 

  85. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S et al (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121(7):2921–2931. https://doi.org/10.1172/JCI57275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Santovito D, Egea V, Weber C (2016) Small but smart: MicroRNAs orchestrate atherosclerosis development and progression. Biochim Biophys Acta 1861(12 Pt B):2075–2086. https://doi.org/10.1016/j.bbalip.2015.12.013

    Article  PubMed  CAS  Google Scholar 

  87. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20(4):368–376. https://doi.org/10.1038/nm.3487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM (2013) MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 19(7):892–900. https://doi.org/10.1038/nm.3200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173. https://doi.org/10.1161/01.RES.0000265065.26744.17

    Article  PubMed  CAS  Google Scholar 

  90. Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS et al (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A 105(37):14082–14087. https://doi.org/10.1073/pnas.0804597105

    Article  PubMed  PubMed Central  Google Scholar 

  91. Suarez Y, Wang C, Manes TD, Pober JS (2010) Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol 184(1):21–25. https://doi.org/10.4049/jimmunol.0902369

    Article  PubMed  CAS  Google Scholar 

  92. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, MICU Registry, Blackwell TS, Baron RM, Feinberg MW (2012a) MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest 122(6):1973–1990. https://doi.org/10.1172/JCI61495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL et al (2012b) Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60(6):1407–1414. https://doi.org/10.1161/HYPERTENSIONAHA.112.197301

    Article  PubMed  CAS  Google Scholar 

  94. Sun X, Belkin N, Feinberg MW (2013) Endothelial microRNAs and atherosclerosis. Curr Atheroscler Rep 15(12):372. https://doi.org/10.1007/s11883-013-0372-2

    Article  PubMed  CAS  Google Scholar 

  95. Sun X, He S, Wara AKM, Icli B, Shvartz E, Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK, Croce K, Feinberg MW (2014) Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res 114(1):32–40. https://doi.org/10.1161/CIRCRESAHA.113.302089

    Article  PubMed  CAS  Google Scholar 

  96. Taguchi YH (2012) Inference of Target Gene Regulation via miRNAs during Cell Senescence by Using the MiRaGE Server. Aging Dis 3(4):301–306

    PubMed  PubMed Central  Google Scholar 

  97. Tan M, Yan HB, Li JN, Li WK, Fu YY, Chen W, Zhou Z (2016) Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cell Physiol Biochem 38(6):2348–2365. https://doi.org/10.1159/000445588

    Article  PubMed  CAS  Google Scholar 

  98. Tang N, Sun B, Gupta A, Rempel H, Pulliam L (2016) Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB J 30(9):3097–3106. https://doi.org/10.1096/fj.201600368RR

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY et al (2014) Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res 103(1):100–110. https://doi.org/10.1093/cvr/cvu070

    Article  PubMed  CAS  Google Scholar 

  100. Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SH (2013) Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res 50(4):346–354. https://doi.org/10.1159/000351767

    Article  PubMed  CAS  Google Scholar 

  101. Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, Boon RA et al (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119(6):1607–1616. https://doi.org/10.1182/blood-2011-08-373886

    Article  PubMed  CAS  Google Scholar 

  102. van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006, S3991-3915. https://doi.org/10.1182/blood-2013-02-478925

    Article  PubMed  CAS  Google Scholar 

  103. van der Vorst EPC, de Jong RJ, Donners M (2018) Message in a microbottle: modulation of vascular inflammation and atherosclerosis by extracellular vesicles. Front Cardiovasc Med 5:2. https://doi.org/10.3389/fcvm.2018.00002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, Palmisano BT, Tabet F, Cui HL, Rye KA, Sethupathy P, Remaley AT (2014) MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A 111(40):14518–14523. https://doi.org/10.1073/pnas.1215767111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L, Sinha S, deLemos AS et al (2015) Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 21(11):1290–1297. https://doi.org/10.1038/nm.3980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. https://doi.org/10.1016/j.devcel.2008.07.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J et al (2013) Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res 97(3):432–442. https://doi.org/10.1093/cvr/cvs356

    Article  PubMed  CAS  Google Scholar 

  108. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW (2014) Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One 9(9):e105734. https://doi.org/10.1371/journal.pone.0105734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L (2015a) Local microRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol 35(9):1945–1953. https://doi.org/10.1161/ATVBAHA.115.305597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang GJ, Liu GH, Ye YW, Fu Y, Zhang XF (2015b) The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun 459(4):629–635. https://doi.org/10.1016/j.bbrc.2015.02.160

    Article  PubMed  CAS  Google Scholar 

  111. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A (2013) MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol 33(3):449–454. https://doi.org/10.1161/ATVBAHA.112.300279

    Article  PubMed  CAS  Google Scholar 

  112. Wei Y, Zhu M, Corbalan-Campos J, Heyll K, Weber C, Schober A (2015) Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol 35(4):796–803. https://doi.org/10.1161/ATVBAHA.114.304723

    Article  PubMed  CAS  Google Scholar 

  113. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G Jr, Wang KC, Geary GG et al (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation 124(5):633–641. https://doi.org/10.1161/CIRCULATIONAHA.110.005108

    Article  PubMed  CAS  Google Scholar 

  114. Xiao Y, Zhao J, Tuazon JP, Borlongan CV, Yu G (2019) MicroRNA-133a and myocardial infarction. Cell Transplant 28(7):831–838. https://doi.org/10.1177/0963689719843806

    Article  PubMed  PubMed Central  Google Scholar 

  115. Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC, Yao F, He PP, Ouyang XP, Lan G, Liu D, Zhao ZW, Tan YL, Zheng XL, Yin WD, Tang CK (2016) MicroRNA-27 Prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One 11(6):e0157085. https://doi.org/10.1371/journal.pone.0157085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Yang M, Liu W, Pellicane C, Sahyoun C, Joseph BK, Gallo-Ebert C et al (2014) Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res 55(2):226–238. https://doi.org/10.1194/jlr.M041335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yin M, Loyer X, Boulanger CM (2015) Extracellular vesicles as new pharmacological targets to treat atherosclerosis. Eur J Pharmacol 763(Pt A):90–103. https://doi.org/10.1016/j.ejphar.2015.06.047

    Article  PubMed  CAS  Google Scholar 

  118. Zampetaki A, Dudek K, Mayr M (2013) Oxidative stress in atherosclerosis: the role of microRNAs in arterial remodeling. Free Radic Biol Med 64:69–77. https://doi.org/10.1016/j.freeradbiomed.2013.06.025

    Article  PubMed  CAS  Google Scholar 

  119. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81. https://doi.org/10.1126/scisignal.2000610

    Article  PubMed  Google Scholar 

  120. Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, Li C, Chong M, Ibrahim T, Mercatali L, Amadori D, Lu X, Xie D, Li QJ, Wang XF (2013) miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 15(3):284–294. https://doi.org/10.1038/ncb2690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, Jin LS, Zhan H, Zhang H, Li JS, Wen JK (2017) Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 25(6):1279–1294. https://doi.org/10.1016/j.ymthe.2017.03.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X et al (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215(2):286–293. https://doi.org/10.1016/j.atherosclerosis.2010.12.024

    Article  PubMed  CAS  Google Scholar 

  123. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H et al (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125(23):2892–2903. https://doi.org/10.1161/CIRCULATIONAHA.111.087817

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors, Fatemeh HajiBabaie Alavije, Shirin Kouhpayeh, Ilnaz Rahimmanesh and Laleh Shariati contributed in data colection, Mina Mirian, Maryam Boshtam, Hossein Khanahmad, Azam Gheibi and Ladan Sadeghian contributed in interpretation of data.

The authors, Fatemeh Hajibabaie Alavije, Shirin Kouhpayeh and Laleh Shariati contributed in drafting the paper.

Corresponding author

Correspondence to Laleh Shariati.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Research involving human participants and/or animals

There is no human or animal participation.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

This article review:

The supporting evidences of miRNAs to atherosclerosis process

The role of miRNAs in clinical relevance of atherosclerosis

The application of miRNAs in diagnosis

The application of miRNAs as therapeutic agents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajibabaie, F., Kouhpayeh, S., Mirian, M. et al. MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem 76, 1–12 (2020). https://doi.org/10.1007/s13105-019-00710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00710-7

Keywords

Navigation