Skip to main content
Log in

Matrix rigidity of random Toeplitz matrices

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

A matrix A is said to have rigidity s for rank r if A differs from any matrix of rank r on more than s entries. We prove that random n-by-n Toeplitz matrices over \({\mathbb{F}_{2}}\) (i.e., matrices of the form \({A_{i,j} = a_{i-j}}\) for random bits \({a_{-(n-1)}, \ldots, a_{n-1}}\)) have rigidity \({\Omega(n^3/(r^2\log n))}\) for rank \({r \ge \sqrt{n}}\), with high probability. This improves, for \({r = o(n/\log n \log\log n)}\), over the \({\Omega(\frac{n^2}{r} \cdot\log(\frac{n}{r}))}\) bound that is known for many explicit matrices.

Our result implies that the explicit trilinear \({[n]\times [n] \times [2n]}\) function defined by \({F(x,y,z) = \sum_{i,j}{x_i y_j z_{i+j}}}\) has complexity \({\Omega(n^{3/5})}\) in the multilinear circuit model suggested by Goldreich and Wigderson (Electron Colloq Comput Complex 20:43, 2013), which yields an \({\exp(n^{3/5})}\) lower bound on the size of the so-called canonical depth-three circuits for F. We also prove that F has complexity \({\tilde{\Omega}(n^{2/3})}\) if the multilinear circuits are further restricted to be of depth 2.

In addition, we show that a matrix whose entries are sampled from a \({2^{-n}}\)-biased distribution has complexity \({\tilde{\Omega}(n^{2/3})}\), regardless of depth restrictions, almost matching the known \({O(n^{2/3})}\) upper bound for any matrix. We turn this randomized construction into an explicit 4-linear construction with similar lower bounds, using the quadratic small-biased construction of Mossel et al. (Random Struct Algorithms 29(1):56–81, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon N., Goldreich O., Håstad J., Peralta R. (1992) Simple Construction of Almost k-wise Independent Random Variables. Random Structures and Algorithms 3(3): 289–304

    Article  MathSciNet  MATH  Google Scholar 

  • A. E. Andreev (1987). On a method for obtaining more than quadratic effective lower bounds for the complexity of \({\pi}\)-schemes. Moscow Univ. Math. Bull. 42, 63–66. In Russian.

  • Bürgisser P., Lotz M. (2004) Lower bounds on the bounded coefficient complexity of bilinear maps. J. ACM 51(3): 464–482

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman J. (1993) A note on matrix rigidity. Combinatorica 13(2): 235–239

    Article  MathSciNet  MATH  Google Scholar 

  • O. Goldreich (2008). Computational Complexity: A Conceptual Perspective. Cambridge University Press.

  • O. Goldreich & A. Tal (2016). Matrix rigidity of random Toeplitz matrices. In STOC, 91–104.

  • O. Goldreich & A. Wigderson (2013). On the Size of Depth-Three Boolean Circuits for Computing Multilinear Functions. Electronic Colloquium on Computational Complexity (ECCC) 20, 43.

  • J. Håstad (1989). Almost Optimal Lower Bounds for Small Depth Circuits. In RANDOMNESS AND COMPUTATION, 6–20. JAI Press.

  • S. Kopparty, M. Kumar & M. E. Saks (2014). Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields. In ICALP, 726–737.

  • R. Lidl & H. Niederreiter (1997). Finite Fields, volume 20 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2nd edition.

  • Lokam S.V. (2009) Complexity Lower Bounds using Linear Algebra. Foundations and Trends in Theoretical Computer Science 4(1–2): 1–155

    MathSciNet  MATH  Google Scholar 

  • Mossel E., Shpilka A., Trevisan L. (2006) On epsilon-biased generators in \({NC^{0}}\). Random Structures and Algorithms 29(1): 56–81

    Article  MathSciNet  MATH  Google Scholar 

  • Naor J., Naor M. (1993) Small-Bias Probability Spaces: Efficient Constructions and Applications. SIAM J. on Computing 22(4): 838–856

    Article  MathSciNet  MATH  Google Scholar 

  • Paturi R., Pudlák P., Saks M.E., Zane F. (2005) An improved exponential-time algorithm for k-SAT. J. ACM 52(3): 337–364

    Article  MathSciNet  MATH  Google Scholar 

  • R. Paturi, P. Pudlák & F. Zane (1999). Satisfiability Coding Lemma. Chicago J. Theor. Comput. Sci. 1999.

  • Raz R. (2003) On the complexity of matrix product. SIAM J. on Computing 32(5): 1356–1369

    Article  MathSciNet  MATH  Google Scholar 

  • Shokrollahi M.A., Spielman M.A., Stemann V. (1997) A Remark on Matrix Rigidity. Inf. Process. Lett. 64(6): 283–285

    Article  MathSciNet  MATH  Google Scholar 

  • L. G. Valiant (1977). Graph-theoretic arguments in low-level complexity. In Lecture notes in Computer Science, volume 53, 162–176. Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishay Tal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldreich, O., Tal, A. Matrix rigidity of random Toeplitz matrices. comput. complex. 27, 305–350 (2018). https://doi.org/10.1007/s00037-016-0144-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0144-9

Keywords

Subject classification

Navigation