Skip to main content
Log in

Loading different sizes of titania nanoparticles into transformer oil: A study on the dielectric behavior

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2 (titania) nanoparticles (NPs) were successfully synthesized by the sol–gel route with different calcination temperature varied from 300 to 500 °C. The microstructure and morphology of the synthesized samples were characterized under the effect of changing the calcination temperature using X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM). The result obtained from such characteristic tools confirmed the formation of the anatase phase for all the synthesized titania NPs with pronounced dependence of size and agglomeration of particles on the used calcination temperatures. Various nanofluids systems from a commercially mineral oil and the synthesized TiO2 NPs were fabricated with different concentrations up to 5 g/L from each of the synthesized NPs. The dielectric properties of the fabricated nanofluids were examined by studying the effect of the concentration of titania NPs on the variation of ac breakdown voltage and dielectric constant (ε′). All the prepared oil transformer-nanofluid based on the investigated concentrations of the synthesized TiO2 NPs exhibited enhancement in the ac breakdown voltage reaching 111.8% for nanofluid with concentration 0.7 g/L based on T400 sample more than that obtained for the pure oil transformer. The dependency of ε′ on NPs concentration was studied under different applied frequency values from 30 Hz to 1 MHz. The nanoparticle features were reflected on the behavior of ε′ with NPs concentration throughout the investigated range of the applied frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lv Y, Li X, Du Y, Wang F, Li C (2010) Preparation and breakdown strength of TiO2 fluids based on transformer oil. In: Annual report on electrical insulation and dielectric phenomena (CEIDP). IEEE, West Lafayette, Ind, USA

  2. Erdman HG (1996) Electrical insulating oils STP 998. ASTM Publication, Philadelphia, PA, USA

  3. Segal V, Rabinovich A, Nattrass D, Raj K, Nunes A (2000) Experimental study of magnetic colloidal fluids behavior in power transformers. J Magn Magn Mater 215:513–515

    Article  Google Scholar 

  4. Bartley WH (2006) Investigating transformer failure. In: Proc of the Weidmann-ACTI 5th Annual Technical Conference on New Diagnostic Concepts for Better Asset Management, Hartford Steam Boiler Inspection & Insurance Company

  5. EPRI Portfolio (2012) Transmission reliability and performance: 37.002, transformer life extension. http://www.epri.com/portfolio/

  6. Atiya EG, Mansour DA, Khattab RM, Azmy AM (2015) Dispersion behavior and breakdown strength of transformer oil filled with TiO2 nanoparticles. IEEE Trans Dielectr Electr Insu 22:2463–2472

    Article  CAS  Google Scholar 

  7. Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticles in transformer oil dispersions as advanced energy-efficient coolant. Curr Appl Phys 8:710–712

    Article  Google Scholar 

  8. Mansour DA, Elsaeed AM, Izzularab MA (2016) The role of interfacial zone in dielectric properties of transformer oil-based nanofluids. IEEE Trans Dielectr Electr Insul 23:3364–3372

    Article  CAS  Google Scholar 

  9. Timko M, Kopcansky P, Molcan M, Tomco L, Marton K, Molokac S, Rybar P, Stoian F, Holotescu S, Taculescu A (2012) Magneto dielectric properties of transformer oil based magnetic fluids. Acta Phys Pol A 121:1253–1256

    Article  CAS  Google Scholar 

  10. Jin H, Andritsch T, Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2014) Properties of mineral oil based silica nanofluid. IEEE Trans Dielectr Electr Insul 21:1100–1109

    Article  CAS  Google Scholar 

  11. Jung JY, Yoo JY (2009) Thermal conductivity enhancement of nanofluids in conjunction with electric double layer (EDL). Int J Heat Mass Trans 52:525–528

    Article  CAS  Google Scholar 

  12. fan DY, Zhen LY, Quan ZJ, Xin LX, Rong LC (2010) Breakdown properties of transformer oil-based TiO2 nanofluid. In: Annual report on electrical insulation and dielectric phenomena (CEIDP). IEEE, West Lafayette, Ind, USA

  13. Kuffel E, Zaeungl WS (1994) High voltage engineering fundamentals, 2nd edn. Pergamon Press Oxford, Johannesburg

  14. Mansour SA (2019) Non-isothermal crystallization kinetics of nano-sized amorphous TiO2 prepared by facile sonochemical hydrolysis route. Ceram Int 45:2893–2898

    Article  CAS  Google Scholar 

  15. Hanai M, Hosomi S, Kojima H, Hayakawa N, Okubo H (2013) Dependence of TiO2 and ZnO nanoparticle concentration on electrical insulation characteristics of insulating oil. In: IEEE electrical insulation and dielectric phenomena (CEIDP). IEEE, Shenzhen, China

  16. Lv Y, Du Q, Wang L, Sun Q, Huang M, Li C, Qi B (2017) Effect of TiO2 nanoparticles on the ion mobilities in transformer oil-based nanofluid. AIP Adv 7:105022–105026

    Article  Google Scholar 

  17. Du Y, Lv Y, Li C, Chen M, Zhou J, Li X, Zhou Y, Tu Y (2011) Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluid. J Appl Phys 110:104100–104104

    Article  Google Scholar 

  18. Emara MM, Mansour DA, Azmy AM (2017) Mitigating the impact of aging byproducts in transformer oil using TiO2 nanofillers. IEEE Trans Dielectr Electr Insul 24:3471–3480

    Article  CAS  Google Scholar 

  19. Juliet SS, Ramalingom S, Ravidha C, Raj AM (2017) Effect of calcination temperature on titanium oxide nanocrystallites in the anatase phase synthesized By Sol–Gel route. IOSR-JAP 9:32–39

    Google Scholar 

  20. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98

    Google Scholar 

  21. Langford JI, AJC Wilson (1987) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102

    Article  Google Scholar 

  22. Theivasanthi T, Alagar M (2013) Titanium dioxide (TiO2) nanoparticles—XRD analyses—an insight. cornel university library. http://arxiv.org/abs/1307.1091

  23. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. Polym Res 23:85

    Article  Google Scholar 

  24. Mansour SA, Elsad RA, Izzularab MA (2018) Dielectric spectroscopic analysis of polyvinyl chloride nanocomposites loaded with Fe2O3 nanocrystals. Polym Adv Technol 10:1–9

    Google Scholar 

  25. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route. J Sol–Gel Sci Technol 80:333–341

    Article  CAS  Google Scholar 

  26. Hwang J, Zahn M, Osullivan F, Pettersson L, Hjortstam O, Liu R (2010) Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids. J Appl Phys 107:014310–014317

    Article  Google Scholar 

  27. Liu J, Zhou L, Wu G, Zhao Y, Liu P, Peng Q (2012) Dielectric frequency response of oil-paper composite insulation modified by nanoparticles. IEEE Trans Dielectr Electrl Insul 19:510–520

    Article  CAS  Google Scholar 

  28. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12:914–927

    Article  CAS  Google Scholar 

  29. Ciuprina F, Plesa I, Notingher PV, Tudorache T, Panaitescu D (2008) Dielectric properties of nanodielectrics with inorganic fillers. In: Proc of the Annual report on electrical insulation dielectric phenomena (CEIDP): 682–685. IEEE, Quebec, QC, Canada

  30. Singha S, Thomas MJ (2008) Dielectric properties of epoxy resin nanocomposites. IEEE Trans Dielectr Electr Insul 15:12–23

    Article  CAS  Google Scholar 

  31. Nelson JK, Hu Y (2005) Nanocomposite dielectrics properties and implications. J Phys D Appl Phys 38:213–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to High Voltage and Superconductivity Laboratory, Tanta University, funded from Science and Technology Development Fund (STDF), Egypt, under the grant ID 4872 for supporting the equipment used in dielectric constant measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Mansour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsad, R.A., Mansour, S.A. & Izzularab, M.A. Loading different sizes of titania nanoparticles into transformer oil: A study on the dielectric behavior. J Sol-Gel Sci Technol 93, 615–622 (2020). https://doi.org/10.1007/s10971-019-05159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05159-0

Keywords

Navigation