Skip to main content
Log in

Exploration of targets regulated by miR-125b in porcine adipocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) has been proved to play a key role in lipid metabolism. In our previous study, miR-125b was validated to be differentially expressed in preadipocytes and adipocytes, which was also proved to involve in lipid metabolism. To explore the comprehensive targets of miR-125b in adipocytes, isobaric tag for relative and absolute quantitation (iTRAQ) analysis was performed to obtain differentially expressed proteins in adipocytes comparing negative control (NC) and miR-125b mimic, combining with digital gene expression (DGE) profiling of mRNA incorporated into RNA-induced silencing complex (RISC) pulled down by biotinylated miR-125b mimic and targets prediction of miR-125b by three algorithms, acyl-CoA dehydrogenase short chain (ACADS) and mitochondrial trans-2-enoyl-CoA reductase (MECR) were screened out as miR-125b direct targets. Luciferase reporter assay further validated that miR-125b mimic significantly inhibited the luciferase activity by targeting wild type (WT) 3′-UTR compared with NC. qPCR analysis of ACADS and MECR mRNA from adipose tissues of miR-125b knockout (KO) mice further confirmed the inhibition of miR-125b on ACADS and MECR expressions. Here we report miR-125b play a vital role in maintaining homeostasis of fatty acid metabolism by targeting key enzyme ACADS and MECR in the process of fatty acid elongation and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia H, Verma G, Datta M (2014) miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. Biochim Biophys Acta 1839:334–343

    CAS  PubMed  Google Scholar 

  • Chakravarthy MV, Zhu Y, Lopez M, Yin L, Wozniak DF, Coleman T, Hu Z, Wolfgang M, Vidal-Puig A, Lane MD, Semenkovich CF (2007) Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. J Clin Invest 117:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Su Z (2015) Reveal genes functionally associated with ACADS by a network study. Gene 569:294–302

    CAS  PubMed  Google Scholar 

  • Chen Z, Leskinen H, Liimatta E, Sormunen RT, Miinalainen IJ, Hassinen IE, Hiltunen JK (2009) Myocardial overexpression of Mecr, a gene of mitochondrial FAS II leads to cardiac dysfunction in mouse. PLoS One 4:e5589

    PubMed  PubMed Central  Google Scholar 

  • Cheng C, Chen ZQ, Shi XT (2014) MicroRNA-320 inhibits osteosarcoma cells proliferation by directly targeting fatty acid synthase. Tumour Biol 35:4177–4183

    CAS  PubMed  Google Scholar 

  • Cheng X, Xi QY, Wei S, Wu D, Ye RS, Chen T, Qi QE, Jiang QY, Wang SB, Wang LN, Zhu XT, Zhang YL (2016) Critical role of miR-125b in lipogenesis by targeting stearoyl-CoA desaturase-1 (SCD-1). J Anim Sci 94:65–76

    CAS  PubMed  Google Scholar 

  • Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay HB, Parl AK, Mitchell SL, Singh L, Bell LN, Murdock DG (2016) Altering the mitochondrial fatty acid synthesis (mtFASII) pathway modulates cellular metabolic states and bioactive lipid profiles as revealed by metabolomic profiling. PLoS One 11:e0151171

    PubMed  PubMed Central  Google Scholar 

  • Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W, Yan M, Yu T, Ge H, Lin H, Li J, Liu Y, Geng Q, Zhu M, Liu L, He X, Yao M (2015) Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer. Cell Physiol Biochem 35:1677–1688

    CAS  PubMed  Google Scholar 

  • Femminella GD, Ferrara N, Rengo G (2015) The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6:40

    PubMed  PubMed Central  Google Scholar 

  • Fernandez-Hernando C, Ramirez CM, Goedeke L, Suarez Y (2013) MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 33:178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu MH, Li CL, Lin HL, Tsai SJ, Lai YY, Chang YF, Cheng PH, Chen CM, Yang SH (2015) The potential regulatory mechanisms of miR-196a in Huntington’s disease through bioinformatic analyses. PLoS One 10:e0137637

    PubMed  PubMed Central  Google Scholar 

  • Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469

    CAS  PubMed  Google Scholar 

  • Henry JC, Azevedo-Pouly AC, Schmittgen TD (2011) MicroRNA replacement therapy for cancer. Pharm Res 28:3030–3042

    CAS  PubMed  Google Scholar 

  • Jiang AA, Li MZ, Liu HF, Bai L, Xiao J, Li XW (2014) Higher expression of acyl-CoA dehydrogenase genes in adipose tissues of obese compared to lean pig breeds. Genet Mol Res 13:1684–1689

    CAS  PubMed  Google Scholar 

  • Jin H, Tuo W, Lian H, Liu Q, Zhu XQ, Gao H (2010) Strategies to identify microRNA targets: new advances. New Biotechnol 27:734–738

    CAS  Google Scholar 

  • Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8:e54222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 39:253–259

    CAS  PubMed  Google Scholar 

  • Kim DG, Yoo JC, Kim E, Lee YS, Yarishkin OV, Lee DY, Lee KH, Hong SG, Hwang EM, Park JY (2014) A novel cytosolic isoform of mitochondrial trans-2-enoyl-CoA reductase enhances peroxisome proliferator-activated receptor alpha activity. Endocrinol Metab (Seoul) 29:185–194

    Google Scholar 

  • Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358

    CAS  PubMed  Google Scholar 

  • Kruger C, Kumar KG, Mynatt RL, Volaufova J, Richards BK (2012) Brain transcriptional responses to high-fat diet in ACADS-deficient mice reveal energy sensing pathways. PLoS One 7:e41709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M (2011) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 31:626–638

    CAS  PubMed  Google Scholar 

  • Liu T, Huang Y, Liu J, Zhao Y, Jiang L, Huang Q, Cheng W, Guo L (2013) MicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression. Stem Cells Dev 22:1839–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long XH, Mao JH, Peng AF, Zhou Y, Huang SH, Liu ZL (2013) Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase. Exp Ther Med 5:1048–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    CAS  PubMed  Google Scholar 

  • Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 27:1558–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, DeJesus VR, Vockley J, Arslanian SA (2012) Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 35:605–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-McNicoll M, Neugebauer KM (2013) How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet 14:275–287

    PubMed  Google Scholar 

  • Parl A, Mitchell SL, Clay HB, Reiss S, Li Z, Murdock DG (2013) The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation. Biochem Biophys Res Commun 441:418–424

    CAS  PubMed  Google Scholar 

  • Pelaez N, Carthew RW (2012) Biological robustness and the role of microRNAs: a network perspective. Curr Top Dev Biol 99:237–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pena L, Angle B, Burton B, Charrow J (2012) Follow-up of patients with short-chain acyl-CoA dehydrogenase and isobutyryl-CoA dehydrogenase deficiencies identified through newborn screening: one center’s experience. Genet Med 14:342–347

    CAS  PubMed  Google Scholar 

  • Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S (2013) MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 45:1585–1593

    CAS  PubMed  Google Scholar 

  • Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174

    CAS  PubMed  Google Scholar 

  • Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107

    PubMed  PubMed Central  Google Scholar 

  • Vockley J (2008) Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J Inherit Metab Dis 31:619–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wani S, Cloonan N (2014) Profiling direct mRNA-microRNA interactions using synthetic biotinylated microRNA-duplexes. bioRxiv. https://doi.org/10.1101/005439

  • Yang Y, Chaerkady R, Beer MA, Mendell JT, Pandey A (2009) Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics 9:1374–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 52:585–589

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from the National Key Research and Development Program of China (2016YFD0500503), and the Natural Science Foundation of China program (31472163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Zhang.

Ethics declarations

All the animal experiments were conducted in accordance with the guidelines of Guangdong Province on the Review of Welfare and Ethics of Laboratory Animals approved by the Guangdong Province Administration Office of Laboratory Animals (GPAOLO). All animal procedures were conducted under the protocol (SCAU-AEC-2010-0416) approved by the Animal Ethics Committee of South China Agricultural University.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

ESM 1

(XLSX 13 kb)

ESM 2

(XLSX 16 kb)

ESM 3

(XLSX 68 kb)

ESM 4

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Chen, X., Wang, P. et al. Exploration of targets regulated by miR-125b in porcine adipocytes. In Vitro Cell.Dev.Biol.-Animal 56, 103–111 (2020). https://doi.org/10.1007/s11626-019-00427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00427-3

Keywords

Navigation