Skip to main content
Log in

Effects of the H6R and D7H Mutations on the Heparin-Dependent Modulation of Zinc-Induced Aggregation of Amyloid β

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Zinc ions and glycosaminoglycans (GAGs) are found in amyloid deposits and are known to modulate the β-amyloid peptide (Аβ) aggregation, which is thought to be a key event in the pathogenesis of Alzheimer’s disease (AD). Correlation spectroscopy was used to study how the H6R and D7H mutations of the metal-binding domain (MBD) of Аβ42 affect the modulation of its zinc-induced aggregation by the model GAG heparin. The H6R mutation was shown to decrease and the D7H mutation to increase the Аβ42 propensity to aggregate in the presence of zinc ions. In addition, H6R diminished and D7H enhanced the modulating effect of heparin. The difference in the heparin-dependent modulation was associated with coordination of zinc ions within the MBDs of the mutant peptides. The findings indicate that anion-binding sites formed by complexes of zinc ions with the Аβ MBD play an essential role in the interaction of zinc-induced Аβ aggregates with heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Haass C., Selkoe D.J. 2007. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101–112.

    Article  CAS  Google Scholar 

  2. Faller P., Hureau C., Berthoumieu O. 2013. Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg. Chem. 52, 12193–12206.

    Article  CAS  Google Scholar 

  3. Kulikova A.A., Makarov A.A., Kozin S.A. 2015. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol. Biol. (Moscow). 49 (2), 217–230.

    Article  CAS  Google Scholar 

  4. Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. 1998. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52.

    Article  CAS  Google Scholar 

  5. Miller L.M., Wang Q., Telivala T.P., Smith R.J., Lanzirotti A., Miklossy J. 2006. Synchrotron-based infrared and x-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J. Struct. Biol.155, 30–37.

    Article  CAS  Google Scholar 

  6. Suprun E.V., Radko S.P., Kozin S.A., Mitkevich V.A., Makarov A.A. 2018. Electrochemical detection of Zn(II)-induced amyloid-β aggregation: Insights into aggregation mechanisms. J. Electroanal. Chem.830–831, 34–42.

    Article  Google Scholar 

  7. O’Callaghan P., Sandwall E., Li J.P., Yu H., Ravid R., Guan Z.Z., van Kuppevelt T.H., Nilsson L.N., Ingelsson M., Hyman B.T., Kalimo H., Lindahl U., Lannfelt L., Zhang X. 2008. Heparan sulfate accumulation with Aβ deposits in Alzheimer’s disease and Tg2576 mice is contributed by glial cells. Brain Pathol. 18, 548–561.

    PubMed  Google Scholar 

  8. Bruinsma I.B., te Riet L., Gevers T., ten Dam G.B., van Kuppevelt T.H., David G., Kusters B., de Waal R.M., Verbeek M.M. 2010. Sulfation of heparan sulfate associated with amyloid-β plaques in patients with Alzheimer’s disease. Acta Neuropathol. 119, 211–220.

    Article  CAS  Google Scholar 

  9. Ariga T., Miyatake T., Yu R.K. 2010. Role of proteoglycans and glycosaminoglycans in the pathogenesis of Alzheimer’s disease and related disorders: Amyloidogenesis and therapeutic strategies—a review. J. Neurosci. Res. 88, 2303–2315.

    Article  CAS  Google Scholar 

  10. Bergamaschini L., Rossi E., Vergani C., De Simoni M.G. 2009. Alzheimer’s disease: Another target for heparin therapy. Sci. World J.9, 891–908.

    Article  CAS  Google Scholar 

  11. Bush A.I., Tanzi R.E. 2008. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics. 5, 421–432.

    Article  CAS  Google Scholar 

  12. Yoshiike Y., Tanemura K., Murayama O., Akagi T., Murayama M., Sato S., Sun X., Tanaka N., Takashima A. 2001. New insights on how metals disrupt amyloid β‑aggregation and their effects on amyloid-β cytotoxicity. J. Biol. Chem. 276, 32293–32299.

    Article  CAS  Google Scholar 

  13. Radko S.P., Khmeleva S.A., Mantsyzov A.B., Kiseleva Y.Y., Mitkevich V.A., Kozin S.A., Makarov A.A. 2018. Heparin modulates the kinetics of zinc-induced aggregation of amyloid-β peptides. J. Alzheimers Dis. 63, 539–550.

    Article  CAS  Google Scholar 

  14. Janssen J.C., Beck J.A., Campbell T.A., Dickinson A., Fox N.C., Harvey R.J., Houlden H., Rossor M.N., Collinge J. 2003. Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology. 60, 235–239.

    Article  CAS  Google Scholar 

  15. Chen W.T., Hong C.J., Lin Y.T., Chang W.H., Huang H.T., Liao J.Y., Chang Y.J., Hsieh Y.F., Cheng C.Y., Liu H.C., Chen Y.R., Cheng I.H. 2012. Amyloid-β (Aβ) D7H mutation increases oligomeric Aβ42 and alters properties of Aβ-zinc/copper assemblies. PLoS One. 7, e35807.

    Article  CAS  Google Scholar 

  16. Khmeleva S.A., Mezentsev Yu.V., Kozin S.A., Mitke-vich V.A., Medvedev A.E., Ivanov A.S., Bodoev N.V., Makarov A.A., Radko S.P. 2015. Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β‑amyloid with DNA. Mol. Biol. (Moscow). 49 (3), 450–456.

    Article  CAS  Google Scholar 

  17. Khmeleva S.A., Kozin S.A., Kiseleva Ya.Yu., Mitke-vich V.A., Makarov A.A., Radko S.P. 2016. Zinc-induced interactions of the metal-binding domain of beta-amyloid with nucleic acids and glycosaminoglycans. Mol. Biol. (Moscow). 50, 1049–1052.

    Article  CAS  Google Scholar 

  18. Radko S.P., Khmeleva S.A., Suprun E.V., Kozin S.A., Bodoev N.V., Makarov A.A., Archakov A.I., Shumyantseva V.V. 2015. Physicochemical methods for studying β-amyloid aggregation. Biomed. Khim. 61, 203–218.

    Article  CAS  Google Scholar 

  19. Suprun E.V., Khmeleva S.A., Kiseleva Y.Y., Radko S.P., Archakov A.I., Shumyantseva V.V. 2016. Quantitative aspects of electrochemical detection of amyloid-β aggregation. Electroanalysis. 28, 1977–1983.

    Article  CAS  Google Scholar 

  20. Sabel C.E., Neureuther J.M., Siemann S. 2010. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using zincon. Anal. Biochem. 397, 218–226.

    Article  CAS  Google Scholar 

  21. Istrate A.N., Kozin S.A., Zhokhov S.S., Mantsyzov A.B., Kechko O.I., Pastore A., Makarov A.A., Polshakov V.I. 2016. Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization. Sci. Rep. 6, 21734.

    Article  CAS  Google Scholar 

  22. Olofsson A., Lindhagen-Persson M., Vestling M., Sauer-Eriksson A.E., Ohman A. 2009. Quenched hydrogen/deuterium exchange NMR characterization of amyloid-β peptide aggregates formed in the presence of Cu2+ or Zn2+. FEBS J.276, 4051–4060.

    Article  CAS  Google Scholar 

  23. Lim K.H., Kim Y.K., Chang Y.T. 2007. Investigations of the molecular mechanism of metal-induced Aβ (1–40) amyloidogenesis. Biochemistry. 46, 13523–13532.

    Article  CAS  Google Scholar 

  24. Zirah S., Kozin S.A., Mazur A.K., Blond A., Cheminant M., Segalas-Milazzo I., Debey P., Rebuffat S. 2006. Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 281, 2151–2161.

    Article  CAS  Google Scholar 

  25. Tsvetkov P.O., Kulikova A.A., Golovin A.V., Tkachev Y.V., Archakov A.I., Kozin S.A., Makarov A.A. 2010. Minimal Zn2+ binding site of amyloid-β. Biophys. J.99, L84–L86.

    Article  CAS  Google Scholar 

  26. Miller Y., Ma B., Nussinov R. 2012. Metal binding sites in amyloid oligomers: Complexes and mechanisms. Coord. Chem. Rev.256, 2245–2252.

    Article  CAS  Google Scholar 

  27. Kozin S.A., Kulikova A.A., Istrate A.N., Tsvetkov P.O., Zhokhov S.S., Mezentsev Y.V., Kechko O.I., Ivanov A.S., Polshakov V.I., Makarov A.A. 2015. The English (H6R) familial Alzheimer’s disease mutation facilitates zinc-induced dimerization of the amyloid-β metal-binding domain. Metallomics. 7, 422–425.

    Article  CAS  Google Scholar 

  28. Polshakov V.I., Mantsyzov A.B., Kozin S.A., Adzhubei A.A., Zhokhov S.S., van Beek W., Kulikova A.A., Indeykina M.I., Mitkevich V.A., Makarov A.A. 2017. A binuclear zinc interaction fold discovered in the homodimer of Alzheimer’s amyloid-β fragment with Taiwanese mutation D7H. Angew. Chem. Int. Ed. Engl. 56, 11734–11739.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We used equipment of the Human Proteome Collective Access Center (Orekhovich Institute of Biomedical Chemistry).

Funding

This work was supported by the program “Basic Research for Biomedical Technologies” of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Radko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: AD, Alzheimer’s disease; GAG, glycosaminoglycan; Aβ, amyloid β; MBD, metal-binding domain; a.a., amino acid residue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radko, S.P., Khmeleva, S.A., Kiseleva, Y.Y. et al. Effects of the H6R and D7H Mutations on the Heparin-Dependent Modulation of Zinc-Induced Aggregation of Amyloid β. Mol Biol 53, 922–928 (2019). https://doi.org/10.1134/S0026893319060141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060141

Keywords:

Navigation