Skip to main content
Log in

On the rate of convergence for Takagi class functions

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider a generalized version of the Takagi function, which is one of the most famous example of nowhere differentiable continuous functions. We investigate a set of conditions to describe the rate of convergence of Takagi class functions from the probabilistic point of view: The law of large numbers, the central limit theorem, and the law of the iterated logarithm. On the other hand, we show that the Takagi function itself does not satisfy the law of large numbers in the usual sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaart, P.C.: On a flexible class of continuous functions with uniform local structure. J. Math. Soc. Jpn. 61, 237–262 (2009)

    Article  MathSciNet  Google Scholar 

  2. Allaart, P.C., Kawamura, K.: The Takagi function: a survey. Real Anal. Exch. 37, 1–54 (2011/2012)

  3. Azuma, K.: Weighted sums of certain dependent random variables. Tôhoku Math. J. 2(19), 357–367 (1967)

    Article  MathSciNet  Google Scholar 

  4. Billingsley, P.: Ergodic Theory and Information. Wiley, New York (1965)

    MATH  Google Scholar 

  5. Gamkrelidze, N.G.: On a probabilistic properties of Takagi’s function. J. Math. Kyoto Univ. 30, 227–229 (1990)

    Article  MathSciNet  Google Scholar 

  6. Hall, P., Heyde, C.C.: Martingale Limit Theory and its Application, Probability and Mathematical Statistics. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Hata, M., Yamaguti, M.: The Takagi function and its generalization. Jpn. J. Appl. Math. 1, 183–199 (1984)

    Article  MathSciNet  Google Scholar 

  8. Heyde, C.C.: On central limit and iterated logarithm supplements to the martingale convergence theorem. J. Appl. Probab. 14, 758–775 (1977)

    Article  MathSciNet  Google Scholar 

  9. Kôno, N.: On generalized Takagi functions. Acta Math. Hung. 49, 315–324 (1987)

    Article  MathSciNet  Google Scholar 

  10. Lagarias, J.C.: The Takagi function and its properties, functions in number theory and their probabilistic aspects. RIMS Kôkyûroku Bessatsu B34, 153–189 (2012)

    MATH  Google Scholar 

  11. Scott, D.J., Huggins, R.M.: On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales. Bull. Aust. Math. Soc. 27, 443–459 (1983)

    Article  MathSciNet  Google Scholar 

  12. Stout, W.F.: Almost sure convergence, Probability and Mathematical Statistics, vol. 24. Academic Press, New York (1974)

    Google Scholar 

  13. Takagi, T.: A simple example of a continuous function without derivative. Proc. Phys. Math. Jpn. 1, 176–177 (1903)

    MATH  Google Scholar 

  14. Yamaguti, M., Hata, M.: Weierstrass’s function and chaos. Hokkaido Math. J. 12, 333–342 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors deeply thank anonymous referees for their valuable comments. In particular, one of referees suggests simplification of some of our original arguments, which are adopted in the revised version. They also thank the editor for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Takei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Masato Takei is partially supported by JSPS Grant-in-Aid for Young Scientists (B) No. 16K21039, and JSPS Grant-in-Aid for Scientific Research (C) No. 19K03514.

Appendix

Appendix

Once one recognizes that (8) should hold, it can be quickly obtained by summing up the asymptotics

$$\begin{aligned} N^{1-\beta } e^{-KN^{\beta }} - (N+1)^{1-\beta } e^{-K(N+1)^{\beta }} = (1+o(1))K\beta e^{-KN^{\beta }} \quad \mathrm{as }\; N \rightarrow \infty , \end{aligned}$$

which can be proved by differentiation of \(N^{1-\beta } e^{-KN^{\beta }}\) in N. For the sake of completeness, we give a constructive proof of (8).

Lemma A1

For \(K>0\) and \(0<\beta < 1\), there exist positive constants \(C_i=C_i(K,\beta )\)\((i=1,2)\) such that

$$\begin{aligned} \int _a^{\infty } e^{-K x^{\beta }}\,dx&\ge C_1 a^{1-\beta } e^{-Ka^{\beta }} \qquad \mathrm{for\,any}\;a>0, \mathrm{and} \\ \int _a^{\infty } e^{-K x^{\beta }}\,dx&\le C_2 a^{1-\beta } e^{-Ka^{\beta }} \qquad \mathrm{for}\, a\ge 1 \,\mathrm{satisfying }\,K a^{\beta } \ge 1. \end{aligned}$$

Proof

By changing the variable to \(t=Kx^{\beta }\),

$$\begin{aligned} \int _a^{\infty } e^{-K x^{\beta }}\,dx&= \dfrac{1}{\beta K^{\frac{1}{\beta }}}\int _{Ka^{\beta }}^{\infty } t^{\frac{1}{\beta }-1} e^{-t}\,dt. \end{aligned}$$

Using integration by parts, we have

$$\begin{aligned} \int _{Ka^{\beta }}^{\infty } t^{\frac{1}{\beta }-1} e^{-t}\,dt&=\left[ -t^{\frac{1}{\beta }-1} e^{-t}\right] _{Ka^{\beta }}^{\infty } + \int _{Ka^{\beta }}^{\infty } \left( \frac{1}{\beta }-1\right) t^{\frac{1}{\beta }-2}e^{-t}\,dt \\&\ge (Ka^{\beta })^{\frac{1}{\beta }-1} e^{-Ka^{\beta }} = K^{\frac{1}{\beta }-1} a^{1-\beta } e^{-Ka^{\beta }}. \end{aligned}$$

For the other direction, let \(s:= \left\lceil \dfrac{1}{\beta }-1 \right\rceil \). By repeated use of integration by parts,

$$\begin{aligned} \int _{Ka^{\beta }}^{\infty } t^{\frac{1}{\beta }-1} e^{-t}\,dt&=(Ka^{\beta })^{\frac{1}{\beta }-1} e^{-Ka^{\beta }} + \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }-1\right) }\int _{Ka^{\beta }}^{\infty } t^{\frac{1}{\beta }-2}e^{-t}\,dt \\&= \cdots \\&= \sum _{i=1}^s \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }+i-1\right) } (Ka^{\beta })^{\frac{1}{\beta }-i} e^{-Ka^{\beta }} \\&\quad +\, \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }-s\right) }\int _{Ka^{\beta }}^{\infty } t^{\frac{1}{\beta }-s-1}e^{-t}\,dt. \end{aligned}$$

For \(a \ge 1\), we have \(a^{1-i\beta } \le a^{1-\beta }\) for \(i=1,\ldots ,s\). Noting that \((1/\beta )-s-1 \le 0\), for \(a \ge 1\) satisfying \(Ka^{\beta } \ge 1\), the second term in the right hand side is not more than

$$\begin{aligned} \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }-s\right) }\int _{Ka^{\beta }}^{\infty } e^{-t}\,dt = \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }-s\right) } \cdot e^{-Ka^{\beta }}. \end{aligned}$$

Thus we have

$$\begin{aligned} \int _{Ka^{\beta }}^{\infty } t^{\frac{1}{\beta }-1} e^{-t}\,dt \le \left( \sum _{i=1}^s \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }+i-1\right) }K^{\frac{1}{\beta }-i} + \dfrac{\varGamma \left( \tfrac{1}{\beta }\right) }{\varGamma \left( \tfrac{1}{\beta }-s\right) }\right) a^{1-\beta } e^{-Ka^{\beta }}. \end{aligned}$$

\(\square \)

By this lemma, we have

$$\begin{aligned} \sum _{n=N}^{\infty } e^{-K n^{\beta }}&\ge \int _N^{\infty } e^{-K x^{\beta }}\,dx \ge C_1 N^{1-\beta } e^{-KN^{\beta }} \end{aligned}$$

for any N, and

$$\begin{aligned} \sum _{n=N}^{\infty } e^{-K n^{\beta }}&\le e^{-KN^{\beta }} +\int _N^{\infty } e^{-K x^{\beta }}\,dx \le (1+C_2) N^{1-\beta } e^{-KN^{\beta }} \end{aligned}$$

for sufficiently large N.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osaka, S., Takei, M. On the rate of convergence for Takagi class functions. Japan J. Indust. Appl. Math. 37, 193–212 (2020). https://doi.org/10.1007/s13160-019-00398-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00398-8

Keywords

Mathematics Subject Classification

Navigation