Skip to main content
Log in

Molecular computing for Markov chains

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this paper, it is presented a methodology for implementing arbitrarily constructed time-homogenous Markov chains with biochemical systems. Not only discrete but also continuous-time Markov chains are allowed to be computed. By employing chemical reaction networks as a programmable language, molecular concentrations serve to denote both input and output values. One reaction network is elaborately designed for each chain. The evolution of species’ concentrations over time well matches the transient solutions of the target continuous-time Markov chain, while equilibrium concentrations can indicate the steady state probabilities. Additionally, second-order Markov chains are considered for implementation, with bimolecular reactions rather than unary ones. An original scheme is put forward to compile unimolecular systems to DNA strand displacement reactions for the sake of future physical implementations. Deterministic, stochastic and DNA simulations are provided to enhance correctness, validity and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021

    Article  Google Scholar 

  • Anderson DF, Kurtz TG (2011) Continuous time Markov Chain models for chemical reaction networks. Springer, New York, pp 3–42

    Google Scholar 

  • Bennett CH (1982) The thermodynamics of computation—a review. Int J Theor Phys 21(12):905

    Article  Google Scholar 

  • Berry G, Boudol G (1992) The chemical abstract machine. Theor Comput Sci 96(1):217

    Article  MathSciNet  MATH  Google Scholar 

  • Bolch G, Greiner S, de Meer H, Trivedi KS (2006) Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Cardelli L (2013) Two-domain DNA strand displacement. Math Struct Comput Sci 23(2):247

    Article  MathSciNet  MATH  Google Scholar 

  • Cardona M, Colomer M, Conde J, Miret J, Miró J, Zaragoza A (2005) Markov chains: computing limit existence and approximations with DNA. Biosystems 81(3):261

    Article  Google Scholar 

  • Chen HL, Doty D, Soloveichik D (2014) Deterministic function computation with chemical reaction networks. Nat Comput 13(4):517

    Article  MathSciNet  MATH  Google Scholar 

  • Ching WK, Huang X, Ng MK, Siu TK (2013) Markov chains. Springer, Berlin, pp 141–176

    Book  Google Scholar 

  • DeGroot MH, Schervish MJ (2012) Probability and statistics. Addison-Wesley, Boston

    Google Scholar 

  • Érdi P, Tóth J (1989) Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Manchester University Press, Manchester

    MATH  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403

    Article  MathSciNet  Google Scholar 

  • Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and turing machines. Proc Natl Acad Sci 88(24):10983

    Article  MATH  Google Scholar 

  • Horn F, Jackson R (1972) General mass action kinetics. Arch Ration Mech Anal 47(2):81

    Article  MathSciNet  Google Scholar 

  • Jiang H, Salehi SA, Riedel MD, Parhi KK (2013a) Discrete-time signal processing with DNA. ACS Synth Biol 2(5):245

    Article  Google Scholar 

  • Jiang H, Riedel MD, Parhi KK (2013b) Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD), pp 721–727

  • Jiang H, Riedel M, Parhi KK (2011) Proceedings of the design automation conference, pp 836–841

  • Kannan KS, Vallinayagam V, Venkatesan P (2007) Markov chain Monte Carlo methods in molecular computing. In: IJISE

  • Kharam AP, Jiang H, Riedel MD, Parhi KK (2011) Proceedings of the Pacific symposium on biocomputing, pp 302–313

  • Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical reactions. J Chem Phys 57(7):2976

    Article  Google Scholar 

  • Liekens A, Fernando C (2007) Turing complete catalytic particle computers. In: Advances in artificial life, pp 1202–1211

  • Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206

    Article  Google Scholar 

  • Magnasco MO (1997) Chemical kinetics is turing universal. Phys Rev Lett 78(6):1190

    Article  Google Scholar 

  • McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab 4(03):413

    Article  MathSciNet  MATH  Google Scholar 

  • Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278(5337):446

    Article  Google Scholar 

  • Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(1):73

    Article  MathSciNet  MATH  Google Scholar 

  • Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034):1196

    Article  Google Scholar 

  • Rothemund PWK (1995) A DNA and restriction enzyme implementation of turing machines. DNA Based Comput 27:75

    Article  MathSciNet  Google Scholar 

  • Salehi SA, Riedel MD, Parhi KK (2014) Proceedings of the IEEE Asilomar conference on signals, systems and computers, pp 1767–1772

  • Salehi SA, Riedel MD, Parhi KK (2015a) Proceedings of the IEEE international conference on digital signal processing (DSP), pp 689–693

  • Salehi SA, Jiang H, Riedel MD, Parhi KK (2015b) Molecular sensing and computing systems. IEEE Trans Mol Biol Multi Scale Commun 1(3):249

    Article  Google Scholar 

  • Salehi SA, Parhi KK, Riedel MD (2016) Chemical reaction networks for computing polynomials. ACS Synth Biol 6(1):76

    Article  Google Scholar 

  • Shen Z, Zhang C, Ge L, Zhuang Y, Yuan B, You X (2016) Proceedings of the IEEE international workshop on signal processing systems (SiPS) IEEE, pp 27–32

  • Soloveichik D (2009) CRNSimulator Mathematica Package. http://users.ece.utexas.edu/~soloveichik/crnsimulator.html. Accessed 20 Dec 2018

  • Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput 7(4):615

    Article  MathSciNet  MATH  Google Scholar 

  • Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci 107(12):5393

    Article  Google Scholar 

  • Stemmer WP (1995) The evolution of molecular computation. Science 270(5241):1510

    Article  Google Scholar 

  • Van Kampen NG (1995) Stochastic processes in physics and chemistry. Elsevier, London

    MATH  Google Scholar 

  • Yurke B, Mills AP (2003) Using DNA to power nanostructures. Genet Program Evolv Mach 4(2):111

    Article  Google Scholar 

  • Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131(47):17303

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by NSFC under grants 61871115 and 61501116, Jiangsu Provincial NSF for Excellent Young Scholars under grant BK20180059, the Six Talent Peak Program of Jiangsu Province under grant 2018-DZXX-001, the Distinguished Perfection Professorship of Southeast University, the Fundamental Research Funds for the Central Universities, the SRTP of Southeast University, and the Project Sponsored by the SRF for the Returned Overseas Chinese Scholars of MoE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shen, Z., Wei, W. et al. Molecular computing for Markov chains. Nat Comput 19, 593–608 (2020). https://doi.org/10.1007/s11047-019-09736-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09736-8

Keywords

Navigation