Skip to main content

Advertisement

Log in

Small-scale distribution modeling of benthic species in a protected natural hard ground area in the German North Sea (Helgoländer Steingrund)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Natural stony and coarse-grained habitats entail important ecological features for the marine environment. Due to the complexity of their bottom characteristics, they host a high biodiversity compared to surrounding soft bottom areas. The German nature conservation area “Helgoländer Steingrund” (HSG; 54°14.00 N and 8°03.00 W) is subject to regular monitoring but lacks information on the spatial distribution of benthic species. Within this study, a new approach using species distribution models (SDM) was tested to fill these gaps of knowledge. Newly recorded environmental data (depth, sediments, current velocities) in the HSG and information on the presence and absences of nine benthic species (Echinus esculentus, Metridium senile, Cancer pagurus, Phymatolithon spp., Axinella polypoides, Homarus gammarus, Flustra foliacea, Alcyonidium diaphanum, Alcyonium digitatum), collected using video analysis of drop camera records, was used to perform SDMs. The models revealed good evaluation measures (true skill statistic > 0.7; area under the receiver operation characteristic curve > 0.90), implying that the model showed good predictive performance for the potential distribution of the tested species. The outcome of this study is a clear recommendation on SDM application in further environmental monitoring programs on the HSG and other protected hard ground areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Anthony KRN (1997) Prey capture by the sea anemone Metridium senile (L.): effects of body size, flow regime, and upstream neighbors. Biol Bull 192:73–86. https://doi.org/10.2307/1542577

    Article  Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assamblages: a synthesis of present knowledge. Oceanogr Mar Biol 44:123–195

    Article  Google Scholar 

  • Bartholomä A (2006) Acoustic bottom detection and seabed classification in the German Bight, southern North Sea. 177–184. https://doi.org/10.1007/s00367-006-0030-6

  • Bartholomä A, Holler P, Schrottke K, Kubicki A (2011) Acoustic habitat mapping in the German Wadden Sea – comparison of hydro-acoustic devices. J Coast Res 1–5

  • BFNReport477 (2018) Die Meeresschutzgebiete in der deutschen ausschließlichen Wirtschaftszone der Nordsee – Beschreibung und Zustandsbewertung – Die Meeresschutzgebiete in der deutschen ausschließlichen Wirtschaftszone der Nordsee

  • Bitschofsky F, Forster S, Scholz J (2011) Regional and temporal changes in epizoobiontic bryozoan-communities of Flustra foliacea (Linnaeus, 1758) and implications for North Sea ecology. Estuar Coast Shelf Sci 91:423–433. https://doi.org/10.1016/j.ecss.2010.11.004

    Article  Google Scholar 

  • Booth GD, Niccolucci MJ, Schuster EG (1994) Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. Ogden, UT US Dept Agric For Serv Intermt Res Stn no.470:20

  • Breiman L (2001) Random forests. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Breiner FT, Guisan A, Bergamini A, Nobis MP (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218. https://doi.org/10.1111/2041-210X.12403

    Article  Google Scholar 

  • Brezina J (1979) Particle size and settling rate distributions of sand-sized materials. In: PARTEC - 2nd European Symposium on Particle Characterization. Nürnberg, pp 1–47

  • Davies J, Baxter J, Bradley M, et al (2001) Marine monitoring handbook. UK Mar SACs Proj 221

  • de Kluijver MJ (1991) Sublittoral hard substrate communities off Helgoland. Helgoländer Meeresun 45:317–344. https://doi.org/10.1007/BF02365523

    Article  Google Scholar 

  • Dederer G, Schneider C (2015) Der Helgoländer Steingrund

  • Dederer G, Boos K, Kanstinger P, et al (2015) Tauch-Untersuchung des “Steingrund” bei Helgoland (FFH DE 1714-391) und Konzeptentwicklung eines Tauch-Monitorings für den FFH Lebensraumtyp Riff. Abschlussbericht

  • Degraer S, Moerkerke G, Rabaut M et al (2008) Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega. Remote Sens Environ 112:3323–3328. https://doi.org/10.1016/j.rse.2007.12.012

    Article  Google Scholar 

  • Diesing M, Coggan R, Vanstaen K (2009) Widespread rocky reef occurrence in the central English Channel and the implications for predictive habitat mapping. Estuar Coast Shelf Sci 83:647–658. https://doi.org/10.1016/j.ecss.2009.05.018

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. https://doi.org/10.1111/j.1600-0587.2012.07348.x

  • Ehrhold A, Hamon D, Guillaumont B (2006) The REBENT monitoring network, a spatially integrated, acoustic approach to surveying nearshore macrobenthic habitats: application to the Bay of Concarneau (South Brittany, France). ICES J Mar Sci 63:1604–1615. https://doi.org/10.1016/j.icesjms.2006.06.010

    Article  Google Scholar 

  • Elith J, Ferrier S, Huettmann F, Leathwick J (2005) The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model 186:280–289. https://doi.org/10.1016/J.ECOLMODEL.2004.12.007

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. https://doi.org/10.1017/s0376892997000088

    Article  Google Scholar 

  • Forster-Smith RL, Davies J, Sotheran I (1999) Broad scale remote survey and mapping of sublittoral habitats and biota. Report on sublittoral mapping methodology Sea Map Res Gr 157

  • Fortunato H (2015) Coralline red algae: a proxy in climate and ocean acidification studies. Neues Jahrb Geol Palaontol Abh 277:189–208. https://doi.org/10.1127/njgpa/2015/0498

    Article  Google Scholar 

  • Foster AG, Walker BK, Riegl BM, et al (2019) Interpretation of single-beam acoustic backscatter using lidar-derived topographic complexity and benthic habitat classifications in a coral reef environment Interpretation of Single-Beam Acoustic Backscatter Using Lidar-Derived Topographic Complexity and 2009:16–26. https://doi.org/10.2112/SI53-003.1

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 11:416–431

    Google Scholar 

  • Georges D, Thuiller W (2013) Multi-species distribution modeling with biomod2. R-CRAN Proj 11

  • Gleason ACR (2009) Single-beam accoustic seabed classification in coral reef environments with application to the assessment of grouper and snapper habitat in the upper florida keys, USA. Univ Miami 190

  • Glockzin M, Gogina M, Zettler ML (2009) Beyond salty reins - modelling benthic species ’ spatial response to their physical environment in the Pomeranian Bay ( Southern Baltic Sea ) benthic Zone in Słupsk Beyond salty reins - Modeling benthic species ’ spatial response to their physical environ

  • Gogina M, Glockzin M, Zettler ML (2010) Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters . 1 . Causal analysis. J Mar Syst 79:112–123. https://doi.org/10.1016/j.jmarsys.2009.07.006

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Gutperlet R, Capperucci RM, Bartholomä A, Kröncke I (2017) Relationships between spatial patterns of macrofauna communities, sediments and hydroacoustic backscatter data in a highly heterogeneous and anthropogenic altered environment. J Sea Res 121:33–46. https://doi.org/10.1016/j.seares.2017.01.005

    Article  Google Scholar 

  • Habib A, Khoshelham K, Akdim N, el Ghandour FE, Labbassi K, Menenti M (2018) Impact of spatial resolution, interpolation and filtering algorithms on DEM accuracy for geomorphometric research: a case study. MESE 4:1537–1554. https://doi.org/10.1007/s40808-018-0512-3

  • Häder D-P, Kumar HD, Smith RC, Worrest RC (1998) Effects on aquatic ecosystems. JPPA 1344:53–68. https://doi.org/10.1111/j.1365-2761.1990.tb00803.x

  • Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15:361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

  • Hartnoll RG (1975) The annual cycle of Alcyonium digitatum. Estuar Coast Mar Sci 3:71–78. https://doi.org/10.1016/0302-3524(75)90006-7

    Article  Google Scholar 

  • Hass HC, Bartsch I (2008) Acoustic kelp bed mapping in shallow rocky coasts - case study Helgoland. 50–53 , In: Doerffer R, Colijn F, van Beusekom J (eds.). Observing the Coastal Sea - an Atlas of Advanced Monitoring Techniques. LOICS Reports & Studies 33. Geesthacht, Germany: GKSS Research centre.

  • Hass HC, Mielck F, Fiorentino D, Papenmeier S, Holler P, Bartholomä A (2016) Seafloor monitoring west of Helgoland (German Bight, North Sea) using the acoustic ground discrimination system RoxAnn. Geo-Marine Letters 37:125–136. https://doi.org/10.1007/s00367-016-0483-1

  • Holler P, Markert E, Bartholomä A, et al (2017) Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German Bight, southern North Sea. 93–109. https://doi.org/10.1007/s00367-016-0488-9

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, Second Edition. John Wiley & Sons, Inc

  • Howson CM, Picton BE (1997) The species directory of the marine fauna and flora of the British Isles and surrounding seas 28

  • Kendall MS, Jensen OP, Alexander C et al (2005) Benthic mapping using sonar, video transects, and an innovative approach to accuracy assessment: a characterization of bottom features in the Georgia Bight. J Coast Res 21:1154–1165. https://doi.org/10.2112/03-0101R.1

    Article  Google Scholar 

  • Kenny AJ, Andrulewicz E, Bokuniewicz H, et al (2000) An overview of seabed mapping technologies in the context of

  • Kostylev VE, Erlandsson J, Yiu M, Williams GA (2005) The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. 2:272–286. https://doi.org/10.1016/j.ecocom.2005.04.002

  • Kröncke I, Stoeck T, Wieking G, Palojärvi A (2004) Relationship between structural and trophic aspects of microbial and macrofaunal communities in different areas of the North Sea. Mar Ecol Prog Ser 282:13–31. https://doi.org/10.3354/meps282013

    Article  Google Scholar 

  • Kröncke I, Becker LR, Badewien TH, et al (2018) Near- and offshore macrofauna communities and their physical environment in a South-Eastern North Sea Sandy Beach System 5:1–11. https://doi.org/10.3389/fmars.2018.00497

  • Kühne S (1992) Die Fauna des Steingrundes in der Deutschen Bucht - unter besonderer Berücksichtigung der Epifauna. Bonn

  • Kühne S, Rachor E (1996) The macrofauna of a stony sand area in the German Bight (North Sea). Helgol Mar Res 50:433–452. https://doi.org/10.1007/bf02367159

    Article  Google Scholar 

  • Landis JR, Koch GG (2013) The measurement of observer agreement for categorical data Data for Categorical of Observer Agreement The Measurement. Society 33:159–174

    Google Scholar 

  • Lenoir S, Beaugrand G, Lecuyer É (2011) Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Glob Chang Biol 17:115–129. https://doi.org/10.1111/j.1365-2486.2010.02229.x

    Article  Google Scholar 

  • Little C, Kitching J (1996) The biology of the rocky shores. Oxford University Press, New York

    Google Scholar 

  • Markert E, Holler P, Kröncke I, Bartholomä A (2013) Benthic habitat mapping of sorted bedforms using hydroacoustic and ground-truthing methods in a coastal area of the German Bight/ North Sea. Estuar Coast Shelf Sci 1–11. https://doi.org/10.1016/j.ecss.2013.05.027

  • Markert E, Kröncke I, Kubicki A (2015) Small scale morphodynamics of shoreface-connected ridges and their impact on benthic macrofauna. J Sea Res 99:47–55. https://doi.org/10.1016/j.seares.2015.02.001

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x

    Article  Google Scholar 

  • Martin JP, Garese A, Sar A, Acuña FH (2015) Fouling community dominated by Metridium senile ( Cnidaria: Anthozoa: Actiniaria ) in Bahía San Julián (southern Patagonia, Argentina). 79:211–221

  • Maxwell DL, Stelzenmüller V, Eastwood PD, Rogers SI (2009) Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. J Sea Res 61:258–267. https://doi.org/10.1016/J.SEARES.2008.11.008

    Article  Google Scholar 

  • McCullagh P, Nelder J (1998) Generalized linear models. Chapman and Hall, London New York

    Google Scholar 

  • Meißner K, Darr A, Rachor E (2008) Development of habitat models for Nephtys species (Polychaeta: Nephtyidae) in the German Bight (North Sea). J Sea Res 60:276–291. https://doi.org/10.1016/J.SEARES.2008.08.001

    Article  Google Scholar 

  • Michaelis R, Hass HC, Mielck F et al (2019a) Hard-substrate habitats in the German Bight ( South-Eastern North Sea ) observed using drift videos. J Sea Res 144:78–84. https://doi.org/10.1016/j.seares.2018.11.009

    Article  Google Scholar 

  • Michaelis R, Hass HC, Mielck F et al (2019b) Epibenthic assemblages of hard-substrate habitats in the German Bight ( south-eastern North Sea ) described using drift videos Continental Shelf Research Epibenthic assemblages of hard-substrate habitats in the German Bight ( south-eastern North Sea ) des. Cont Shelf Res 175:30–41. https://doi.org/10.1016/j.csr.2019.01.011

    Article  Google Scholar 

  • Mielck F, Bartsch I, Hass HC, et al (2014) Estuarine, Coastal and Shelf Science Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn 143:1–11. https://doi.org/10.1016/j.ecss.2014.03.016

  • Moore CH, Harvey ES, Van Niel K (2010) The application of predicted habitat models to investigate the spatial ecology of demersal fish assemblages. Mar Biol 157:2717–2729. https://doi.org/10.1007/s00227-010-1531-4

    Article  Google Scholar 

  • Mouquet N, Lagadeuc Y, Devictor V et al (2015) Predictive ecology in a changing world. J Appl Ecol 52:1293–1310. https://doi.org/10.1111/1365-2664.12482

    Article  Google Scholar 

  • Nelson ML, Craig SF (2011) Role of the sea anemone Metridium senile in structuring a developing subtidal fouling community 421:139–149. https://doi.org/10.3354/meps08838

  • Neumann H, Diekmann R, Emeis KC et al (2017) Full-coverage spatial distribution of epibenthic communities in the south-eastern North Sea in relation to habitat characteristics and fishing effort. Mar Environ Res 130:1–11. https://doi.org/10.1016/j.marenvres.2017.07.010

    Article  Google Scholar 

  • Parsons DR, Jackson PR, Czuba JA et al (2013) Velocity Mapping Toolbox (VMT): A processing and visualization suite for moving-vessel ADCP measurements. Earth Surf Process Landf 38:1244–1260. https://doi.org/10.1002/esp.3367

    Article  Google Scholar 

  • Pearson R (2010) Species ’ Distribution modeling for conservation educators and practitioners. 3:54–89

  • Porter JS, Hayward PJ, Jones MES (2001) The identity of Alcyonidium diaphanum (Bryozoa: Ctenostomatida). JMBA 81:1001–1008. https://doi.org/10.1017/S0025315401004970

  • Porter JS, Ellis JR, Hayward P et al (2002) Geographic variation in the abundance and morphology of the bryozoan Alcyonidium diaphanum (Ctenostomata: Alcyonidiidae) in UK coastal waters. JMBA 82:529–535. https://doi.org/10.1017/S0025315402005842

  • Pratje O (1951) Die Deutung der Steingruende der Nordsee als Endmoraenen. Deutsche Hydrographische Zeitschrift 4(3):106–114

  • Preston JM (2006) Acoustic classification of seaweed and sediment with depth-compensated vertical echoes. 0–4

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  • Reiss H, Cunze S, König K, et al (2011) Species distribution modelling of marine benthos: a North Sea case study 442:71–86. https://doi.org/10.3354/meps09391

  • Reiss H, Birchenough S, Borja A et al (2014) Benthos distribution modelling and its relevance for marine ecosystem management. ICES J Mar Sci 72:297–315

    Article  Google Scholar 

  • Ridgeway G (1999) The state of boosting. 172–181

  • Robinson CLK, Hay DE, Booth J, Truscott J (1996) Standard methods for sampling resource and habitats in coastal subtidal regions of British Columbia. 2. Review of sampling with preliminary recommendations. Can Tech Rep Fish Aquat Sci XII:119

  • Robinson LM, Elith J, Hobday AJ, et al (2011) Pushing the limits in marine species distribution modelling: lessons from the land present challenges. 789–802. https://doi.org/10.1111/j.1466-8238.2010.00636.x

  • Robinson NM, Nelson WA, Costello MJ et al (2017) A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front Mar Sci 4:1–11. https://doi.org/10.3389/fmars.2017.00421

    Article  Google Scholar 

  • Santileces B, Bolton J, Meneses I (2009) Marine algal communities. In: Witman J, Roy K (eds) Marine macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Schleswig-Holstein Ministerium für Energiewende LU und ländliche R (2016) Managementplan für das Flora-Fauna-Habitat-Gebiet „ DE - 1714-391 Steingrund “. 1–29

  • Schmidt O (1862) Die Spongien des adriatischen Meeres. Wilhelm En, Leipzig

    Google Scholar 

  • Schückel U, Beck M, Kröncke I (2015a) Macrofauna communities of tidal channels in Jade Bay (German Wadden Sea): spatial patterns, relationships with environmental characteristics, and comparative aspects. Mar Biodivers 45:841–855. https://doi.org/10.1007/s12526-014-0308-2

    Article  Google Scholar 

  • Schückel U, Kröncke I, Baird D (2015b) Linking long-term changes in trophic structure and function of an intertidal macrobenthic system to eutrophication and climate change using ecological network analysis. Mar Ecol Prog Ser 536:25–38. https://doi.org/10.3354/meps11391

    Article  Google Scholar 

  • Schulz HD (1983) Der Steingrund bei Helgoland - Restsediment einer saalezeitlichen Endmoräne. Meyniana 35:43–53

    Google Scholar 

  • Singer A, Schückel U, Beck M et al (2016) Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s-2009). Mar Ecol Prog Ser 551:13–30. https://doi.org/10.3354/meps11756

    Article  Google Scholar 

  • Singer A, Millat G, Staneva J, Kröncke I (2017) Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios. Estuar Coast Shelf Sci 188:99–108. https://doi.org/10.1016/j.ecss.2017.02.003

    Article  Google Scholar 

  • Skerritt DJ, Robertson PA, Mill AC, Polunin NVC (2015) Fine-scale movement , activity patterns and home-ranges of European lobster Homarus gammarus. https://doi.org/10.3354/meps11374

  • Stocks T (1955) Der Steingrund bei Helgoland. Deutsche Hydrographische Zeitschrift 8:112–118. https://doi.org/10.1007/BF02019797

  • Taylor RB (1998) Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates

  • Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD - a platform for ensemble forecasting of species distribution. Ecography 32:369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

  • Thuiller CW, Georges D, Engler R, Breiner F (2016) Package ‘biomod2.’ R package:104

  • Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • van Overmeeren R, Craeymeersch J, van Dalfsen J, Fey F, van Heteren S, Meesters E (2009) Acoustic habitat and shellfish mapping and monitoring in shallow coastal water – Sidescan sonar experiences in The Netherlands. Estuarine, Coastal and Shelf Science 85(3):437–448

  • Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730. https://doi.org/10.1111/j.1365-2664.2005.01052.x

    Article  Google Scholar 

  • Venables WN, Dichmont CM (2004) GLMs , GAMs and GLMMs: an overview of theory for applications in fisheries research 70:319–337. https://doi.org/10.1016/j.fishres.2004.08.011

  • Wenner EL, Knott DM, Van Dolah RF, Burrell VG Jr (1983) Invertebrate communities associated with hard bottom habitats in the South Atlantic Bight. Estuar and Coast Shelf Sci 17:143–158. https://doi.org/10.1016/0272-7714(83)90059-8

  • Wieking G, Kröncke I (2003) Macrofauna communities of the Dogger Bank (central North Sea) in the late 1990s: spatial distribution, species composition and trophic structure. Helgol Mar Res 57:34–46. https://doi.org/10.1007/s10152-002-0130-2

  • Wienberg C, Bartholomä A (2005) Acoustic seabed classification in a coastal environment (outer Weser Estuary, German Bight)—a new approach to monitor dredging and dredge spoil disposal. Cont Shelf Res 25:1143–1156. https://doi.org/10.1016/j.csr.2004.12.015

    Article  Google Scholar 

  • Willems W, Goethals P, Van den Eynde D et al (2008) Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega. Ecol Model 212:74–79. https://doi.org/10.1016/j.ecolmodel.2007.10.017

    Article  Google Scholar 

  • Witman J, Dayton P (2001) Rocky subtidal communities. In: Bertness M, Gaines S, Hay M (eds) Marine Community ecology. Sinauer Press, Sunderland, pp 339–366

    Google Scholar 

Download references

Acknowledgments

We thank the captains and crews of RV “Senckenberg” for the help with sampling. We are grateful to Maik Wilsenack, Astrid Raschke, and students for the technical support in the field and in the lab.

Funding

This research was funded by the DFG (“German Research Foundation”) within the INTERCOAST (“Integrated Coastal Zone and Shelf-Sea Research”) graduate program, a joint collaboration between the Senckenberg Institute in Wilhelmshaven (Germany), the University of Bremen (Germany), and the University of Waikato (New Zealand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia R. Becker.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, L.R., Bartholomä, A., Singer, A. et al. Small-scale distribution modeling of benthic species in a protected natural hard ground area in the German North Sea (Helgoländer Steingrund). Geo-Mar Lett 40, 167–181 (2020). https://doi.org/10.1007/s00367-019-00598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-019-00598-8

Navigation