Skip to main content
Log in

Renormalisation of parabolic stochastic PDEs

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We give a survey of recent result regarding scaling limits of systems from statistical mechanics, as well as the universality of the behaviour of such systems in so-called cross-over regimes. It transpires that some of these universal objects are described by singular stochastic PDEs. We then give a survey of the recently developed theory of regularity structures which allows to build these objects and to describe some of their properties. We place particular emphasis on the renormalisation procedure required to give meaning to these equations.

These are expanded notes of the 20th Takagi Lectures held at The University of Tokyo on November 4, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., 343, Springer-Verlag, 2011.

  2. L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys., 183 (1997), 571–607.

    Article  MathSciNet  Google Scholar 

  3. A. Borodin and I. Corwin, Macdonald processes, Probab. Theory Related Fields, 158 (2014), 225–400.

    Article  MathSciNet  Google Scholar 

  4. J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421–445.

    Article  MathSciNet  Google Scholar 

  5. Y. Bruned, A. Chandra, I. Chevyrev and M. Hairer, Renormalizing SPDEs in regularity structures, preprint, arXiv:1711.10239.

  6. Y. Bruned, M. Hairer and L. Zambotti, Algebraic renormalisation of regularity structures, preprint, arXiv:1610.08468.

  7. D.C. Brydges, J. Fröhlich and A.D. Sokal, The random-walk representation of classical spin systems and correlation inequalities, Comm. Math. Phys., 91 (1983), 117–139.

    Article  MathSciNet  Google Scholar 

  8. F. Camia, C. Garban and C.M. Newman, Planar Ising magnetization field I. Uniqueness of the critical scaling limit, Ann. Probab., 43 (2015), 528–571.

    Article  MathSciNet  Google Scholar 

  9. F. Camia, C. Garban and C.M. Newman, Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 146–161.

    Article  MathSciNet  Google Scholar 

  10. A. Chandra and M. Hairer, An analytic BPHZ theorem for regularity structures, preprint, arXiv:1612.08138.

  11. D. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., 189 (2012), 515–580.

    Article  MathSciNet  Google Scholar 

  12. I. Corwin, J. Quastel and D. Remenik, Renormalization fixed point of the KPZ universality class, J. Stat. Phys., 160 (2015), 815–834.

    Article  MathSciNet  Google Scholar 

  13. I. Corwin and H. Shen, Open ASEP in the weakly asymmetric regime, preprint, arXiv:1610.04931.

  14. G. Da Prato and A. Debussche, Two-dimensional Navier–Stokes equations driven by a space-time white noise, J. Funct. Anal., 196 (2002), 180–210.

    Article  MathSciNet  Google Scholar 

  15. G. Da Prato and A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31 (2003), 1900–1916.

    Article  MathSciNet  Google Scholar 

  16. A. De Masi, N. Ianiro, A. Pellegrinotti and E. Presutti, A survey of the hydrodynamical behavior of many-particle systems, In: Nonequilibrium Phenomena, II, Stud. Statist. Mech., XI, North-Holland, Amsterdam, 1984, pp. 123–294.

    Google Scholar 

  17. M.D. Donsker, An invariance principle for certain probability limit theorems, In: On the Distribution of Values of Sums of Random Variables, Mem. Amer. Math. Soc., 6, Amer. Math. Soc., Providence, RI, 1951.

    Google Scholar 

  18. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap, Phys. Rev. D, 86 (2012), 025022.

    Article  Google Scholar 

  19. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys., 157 (2014), 869–914.

    Article  MathSciNet  Google Scholar 

  20. P.K. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext, Springer-Verlag, 2014.

    Chapter  Google Scholar 

  21. P.K. Friz and N.B. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Stud. Adv. Math., 120, Cambridge Univ. Press, Cambridge, 2010.

  22. T. Funaki and J. Quastel, KPZ equation, its renormalization and invariant measures, Stoch. Partial Differ. Equ. Anal. Comput., 3 (2015), 159–220.

    MathSciNet  MATH  Google Scholar 

  23. M. Gerencsér and M. Hairer, Singular SPDEs in Domains with Boundaries, Probab. Theory Related Fields, 2018.

    Google Scholar 

  24. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View. Second ed., Springer-Verlag, 1987.

    MATH  Google Scholar 

  25. P. Gonçalves and M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Ration. Mech. Anal., 212 (2014), 597–644.

    Article  MathSciNet  Google Scholar 

  26. M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86–140.

    Article  MathSciNet  Google Scholar 

  27. M. Gubinelli and N. Perkowski, The Hairer–Quastel universality result in equilibrium, preprint, arXiv:1602.02428.

  28. M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique, J. Amer. Math. Soc., 31 (2018), 427–471.

    Article  MathSciNet  Google Scholar 

  29. M. Hairer, A theory of regularity structures, Invent. Math., 198 (2014), 269–504.

    Article  MathSciNet  Google Scholar 

  30. M. Hairer, An analyst’s take on the BPHZ theorem, preprint, arXiv:1704.08634.

  31. M. Hairer and J. Quastel, A class of growth models rescaling to KPZ, preprint, arXiv:1512.07845.

  32. M. Hairer, M.D. Ryser and H. Weber, Triviality of the 2D stochastic Allen–Cahn equation, Electron. J. Probab., 17 (2012), no. 39.

    MathSciNet  MATH  Google Scholar 

  33. M. Hairer and W. Xu, Large-scale behavior of three-dimensional continuous phase coexistence models, Comm. Pure Appl. Math., 71 (2018), 688–746.

    Article  MathSciNet  Google Scholar 

  34. M. Hairer and W. Xu, Large-scale limit of interface fluctuation models, preprint, arXiv:1802.08192.

  35. K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys., 209 (2000), 437–476.

    Article  MathSciNet  Google Scholar 

  36. M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889–892.

    Article  Google Scholar 

  37. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., 74 (1980), 41–59.

    Article  MathSciNet  Google Scholar 

  38. T.M. Liggett, Interacting Particle Systems, Grundlehren Math. Wiss., 276, Springer-Verlag, 1985.

  39. T.J. Lyons, On the nonexistence of path integrals, Proc. Roy. Soc. London Ser. A, 432 (1991), 281–290.

    Article  MathSciNet  Google Scholar 

  40. T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215–310.

    Article  MathSciNet  Google Scholar 

  41. T.J. Lyons, M. Caruana and T. Lévy, Differential Equations Driven by Rough Paths, Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard, Lecture Notes in Math., 1908, Springer-Verlag, 2007.

  42. T.J. Lyons and Z. Qian, System Control and Rough Paths, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2002.

    Google Scholar 

  43. K. Matetski, J. Quastel and D. Remenik, The KPZ fixed point, preprint, arXiv:1701.00018.

  44. J.-C. Mourrat and H. Weber, Convergence of the two-dimensional dynamic Ising–Kac model to Ф 42 , Comm. Pure Appl. Math., 70 (2017), 717–812.

    Article  MathSciNet  Google Scholar 

  45. E. Nelson, A quartic interaction in two dimensions, In: Mathematical Theory of Elementary Particles, Proc. Conf., Dedham, MA, 1965, M.I.T. Press, Cambridge, MA, 1966, pp. 69–73.

    Google Scholar 

  46. J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality class, J. Stat. Phys., 160 (2015), 965–984.

    Article  MathSciNet  Google Scholar 

  47. K. Ravishankar, Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Z d, Stochastic Process. Appl., 42 (1992), 31–37.

    Article  MathSciNet  Google Scholar 

  48. O. Schramm and S. Smirnov, On the scaling limits of planar percolation. With an Appendix by Christophe Garban, Ann. Probab., 39 (2011), 1768–1814.

    Article  MathSciNet  Google Scholar 

  49. C.A. Tracy and H. Widom, Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys., 279 (2008), 815–844.

    Article  MathSciNet  Google Scholar 

  50. B. Tsirelson, Scaling limit, noise, stability, In: Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, Springer-Verlag, 2004, pp. 1–106.

    MathSciNet  MATH  Google Scholar 

  51. S. Weinberg, High-energy behavior in quantum field-theory, Phys. Rev. (2), 118 (1960), 838–849.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hairer.

Additional information

Communicated by: Takashi Kumagai

This article is based on the 20th Takagi Lectures that the author delivered at the University of Tokyo on November 4, 2017.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hairer, M. Renormalisation of parabolic stochastic PDEs. Jpn. J. Math. 13, 187–233 (2018). https://doi.org/10.1007/s11537-018-1742-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-018-1742-x

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation