Skip to main content
Log in

Sparse representations and compressive sensing in multi-dimensional signal processing

  • S.I. : Visvesvaraya
  • Published:
CSI Transactions on ICT Aims and scope Submit manuscript

Abstract

Sparse representation is widely used in signal/image reconstruction, denoising, restoration, feature extraction, etc. During data compression most of the low magnitude transform coefficients are thrown away while keeping only the high magnitude coefficients. In some practical applications, data acquisition itself is a major challenge, like, signal acquisition in magnetic resonance imaging (MRI), body area networks (BAN), remote sensing, etc. According to compressed sensing theory if signal/image is sparse in some transform domain and acquired with respect to another basis incoherent to the sparse representation basis then one can reconstruct the underlying signal/image just from a few random projections. Multi-dimensional signal processing involving MRI, BAN and remote sensing images takes significant amount of computational time because of their raw data size. Therefore, state-of-the-art sparse reconstruction algorithms developed for parallel computing with multi-core CPU and GP-GPU is required for realtime or near-realtime implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://old.mridata.org/undersampled/abdomens/.

  2. GNRC Hospital, Sixmile, Guwahati, India; http://www.gnrchospitals.com/.

  3. Bhuvan, NRSC Open EO Data Archive , (Last seen on 20 April, 2019). https://bhuvan-app3.nrsc.gov.in/data/download/index.php.

References

  1. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  2. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  3. Hollingsworth KG (2015) Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys Med Biol 60(21):R297–R322

    Article  Google Scholar 

  4. Candes EJ, Romberg JK, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  Google Scholar 

  5. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

    Article  Google Scholar 

  6. Polania LF, Carrillo RE, Blanco-Velasco M, Barner KE (2015) Exploiting prior knowledge in compressed sensing wireless ECG systems. IEEE J Biomed Health Inform 19(2):508–519

    Article  Google Scholar 

  7. SIEMENS Healthineers: MAGNETOM Vida Embrace human nature at 3T (2017) https://www.healthcare.siemens.co.in/magnetic-resonance-imaging/3t-mri-scanner/magnetom-vida. Accessed 19 May 2019

  8. O’Brient S (2017) New ‘compressed sensing’ technology could reduce MRI scan times. Rice University. https://www.tun.com/blog/rice-university-technology-mri-scan/. Accessed 19 May 2019

  9. King K (2016) HyperSense enables shorter scan times without compromising image quality. GE Healthcare. http://www3.gehealthcare.com.sg/~/media/documents/us-global/products/magnetic-resonance-imaging/2017/hypersense.pdf. Accessed 19 May 2019

  10. Geerts-Ossevoort L, de Weerdt E, Duijndam A, van IJperen G, Peeters H, Doneva M, Nijenhuis M, Huang A (2018) Compressed SENSE speed done right. Every time. Philips. https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf. Accessed 19 May 2019

  11. Zhang J, Gu Z, Yu ZL, Li Y (2015) Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted \(l_1\) minimization reconstruction. IEEE J Biomed Health Inform 19(2):520–528

    Article  Google Scholar 

  12. Shimmer3 ECG Unit (2008) http://www.shimmersensing.com/products/shimmer3-development-kit. Accessed 19 May 2019

  13. Handheld 12-Channel Tele-ECG Instrument (2017) http://barc.gov.in/technologies/ecg/index.html. Accessed 17 May 2019

  14. Huang J, Zhang S, Metaxas DN (2011) Efficient MR image reconstruction for compressed MR imaging. Med Image Anal 15(5):670–679

    Article  Google Scholar 

  15. Chen C, Huang J (2014a) Exploiting the wavelet structure in compressed sensing MRI. Magn Reson Med 32:1377–1389

    Google Scholar 

  16. Chen C, Huang J (2014b) The benefit of tree sparsity in accelerated MRI. Med Image Anal 18(6):834–842

    Article  Google Scholar 

  17. Chen C, Li Y, Huang J (2014) Forest sparsity for multi-channel compressive sensing. IEEE Trans Signal Process 62(11):2803–2813

    Article  MathSciNet  Google Scholar 

  18. Majumdar A, Ward RK (2012) Calibration-less multi-coil MR image reconstruction. Magn Reson Med 30(7):1032–1045

    Google Scholar 

  19. Chen C, Li Y, Huang J (2013) Calibrationless parallel MRI with joint total variation regularization. In: Mori K, Sakuma I (eds) International conference on medical image computing and computer assisted intervention (MICCAI-2013). Lecture notes in computer science, vol 8151. Springer, Berlin, pp 106–114

    Chapter  Google Scholar 

  20. Chun IY, Adcock B, Talavage TM (2016) Efficient compressed sensing SENSE pMRI reconstruction with joint sparsity promotion. IEEE Trans Med Imaging 35(1):354–368

    Article  Google Scholar 

  21. Holme HCM, Rosenzweig S, Ong F, Wilke RN, Lustig M, Uecker M (2019) ENLIVE: an efficient nonlinear method for calibrationless and robust parallel imaging. Sci Rep 9(3034):1–13

    Google Scholar 

  22. Vasanawala S, Alley M, Hargreaves B, Barth R, Pauly J, Lustig M (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256(2):607–616

    Article  Google Scholar 

  23. Mamaghanian H, Khaled N, Atienza D, Vandergheynst P (2011) Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans Biomed Eng 58(9):2456–2466

    Article  Google Scholar 

  24. Hooshmand M, Zordan D, Del Testa D, Grisan E, Rossi M (2017) Boosting the battery life of wearables for health monitoring through the compression of biosignals. IEEE Internet Things J 4(5):1647–1662

    Article  Google Scholar 

  25. Zhang Z, Jung T, Makeig S, Rao BD (2013) Compressed sensing for energy-efficient wireless telemonitoring of noninvasive Fetal ECG via block sparse bayesian learning. IEEE Trans Biomed Eng 60(2):300–309

    Article  Google Scholar 

  26. Zhang J, Yu ZL, Gu Z, Li Y, Lin Z (2018) Multichannel electrocardiogram reconstruction in wireless body sensor networks through weighted \(l_{1,2}\) minimization. IEEE Trans Instrum Meas 67(9):2024–2034

    Article  Google Scholar 

  27. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  28. Moustafa MS, Ebied HM, Helmy AK, Nazamy TM, Tolba MF (2017) Acceleration of super-resolution for multispectral images using self-example learning and sparse representation. Comput Electr Eng 62:249–265

    Article  Google Scholar 

  29. Zhu XX, Bamler R (2013) A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans Geosci Remote Sens 51(5):2827–2836

    Article  Google Scholar 

  30. Lustig M, Pauly J (2010) SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64(2):457–471

    Google Scholar 

  31. Liang D, Liu B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62(6):1574–1584

    Article  Google Scholar 

  32. Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001

    Article  Google Scholar 

  33. Sameni R (2012) The open-source electrophysiological toolbox (OSET). http://www.oset.ir. Accessed 18 July 2018

  34. Mamaghanian H, Ansaloni G, Atienza D, Vandergheynst P (2014) Power-efficient joint compressed sensing of multi-lead ECG signals. In: IEEE international conference on acoustics, speech and signal processing (ICASSP) 2014, pp 4409–4412

Download references

Acknowledgements

Author would like to thank “Visvesvaraya PhD Scheme for Electronics and IT” (Grant No. MLA/MUM/GA/10(37)B dt. 15/01/2018), Ministry of Electronics and Information Technology, Government of India for providing financial support to setup necessary infrastructure besides contingency funds for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabesh Deka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, B. Sparse representations and compressive sensing in multi-dimensional signal processing. CSIT 7, 233–242 (2019). https://doi.org/10.1007/s40012-019-00242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40012-019-00242-x

Keywords

Navigation