Skip to main content
Log in

Development of a Versatile Mechanical Testing Device for In Situ Synchrotron Tomography and Diffraction Experiments

  • Thematic Section: 3D Materials Science
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

A new mechanical stage to perform in situ 3D imaging using synchrotron X-ray tomography is presented. Pairing control and acquisition allows the running of high quality continuous mechanical tests to study damage and fracture in any kind of structural materials. The modular design make this device very versatile with the possibility to use many specimen geometries and load ranges up to 5 kN, and switch within minutes from tomography to X-ray diffraction configurations. Examples of successful experiments to study the damage mechanisms with a technical polymer material are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buffière JY, Proudhon H, Ferrié E, Ludwig W, Maire E, Cloetens P (2005) Three dimensional imaging of damage in structural materials using high resolution micro-tomography. Nucl Inst Methods Phys Res B: Beam Interactions with Materials and Atoms 238(1–4):75. https://doi.org/10.1016/j.nimb.2005.06.021

    Google Scholar 

  2. Scott A, Mavrogordato M, Wright P, Sinclair I, Spearing S (2011) In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography. Combust Sci Technol 71(12):1471. https://doi.org/10.1016/j.compscitech.2011.06.004

    Google Scholar 

  3. Withers P, Preuss M (2012) Fatigue and damage in structural materials studied by X-ray tomography. Annu Rev Mater Res 42(1):81. https://doi.org/10.1146/annurev-matsci-070511-155111

    Google Scholar 

  4. Maire E, Withers P (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1. https://doi.org/10.1179/1743280413Y.0000000023

    Article  CAS  Google Scholar 

  5. Poulet PA, Hochstetter G, King A, Proudhon H, Joannès S, Laiarinandrasana L (2016) Observations by in-situ X-ray synchrotron computed tomography of the microstructural evolution of semi-crystalline Polyamide 11 during deformation. Polym Test 56:245. https://doi.org/10.1016/j.polymertesting.2016.10.023. http://www.sciencedirect.com/science/article/pii/S0142941816309217

    Google Scholar 

  6. Löffl C, Saage H, Göken M (2019) In situ X-ray tomography investigation of the crack formation in an intermetallic beta-stabilized TiAl-alloy during a stepwise tensile loading. Int J Fatigue 124:138. https://doi.org/10.1016/j.ijfatigue.2019.02.035

    Google Scholar 

  7. Buffière JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289

    Google Scholar 

  8. Schuren JC, Shade PA, Bernier JV, Li SF, Blank B, Lind J, Kenesei P, Lienert U, Suter RM, Turner TJ, Dimiduk DM, Almer J (2015) New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr Opin Solid State Mater Sci 19(4):235. https://doi.org/10.1016/j.cossms.2014.11.003

    Google Scholar 

  9. Dezecot S, Maurel V, Buffiere JY, Szmytka F, Koster A (2017) 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy. Acta Mater 123:24. https://doi.org/10.1016/j.actamat.2016.10.028

    Google Scholar 

  10. Gueninchault N, Proudhon H, Ludwig W (2016) Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques. J Synchrotron Radiat 23(6):1474. https://doi.org/10.1107/S1600577516013850

    Google Scholar 

  11. Renier M, Bernard P, de Vijver WV, Smets K, Tafforeau P (2013) A large size sample stage for high resolution 2-D and 3-D X-ray imaging. J Phys Conf Ser 425(21):212008. https://doi.org/10.1088/1742-6596/425/21/212008

    Google Scholar 

  12. King A, Guignot N, Zerbino P, Boulard E, Desjardins K, Bordessoule M, Leclerq N, Le S, Renaud G, Cerato M, Bornert M, Lenoir N, Delzon S, Perrillat JP, Legodec Y, Itié JP (2016) Tomography and imaging at the PSICHE beam line of the SOLEIL synchrotron. Rev Sci Instrum 87(9):093704. https://doi.org/10.1063/1.4961365

  13. SLS TOMCAT X02DA beamline team (2019) Sample holder specs for users. https://www.psi.ch/sites/default/files/import/sls/tomcat/Station1_IntroEN/sample_holder_specs2017_v2.pdf

  14. Chaize JM, Götz A, Klotz WD, Meyer J, Perez M, Taurel E (2019) TANGO—an object oriented control system based on CORBA

  15. The Tango Community (2019) TANGO controls. https://www.tango-controls.org/

  16. Pelerin M, Proudhon H (2019) xlab, Sets of programs and commands to control in situ mechanical experiments. https://github.com/heprom/xlab

  17. Purushottam Raj Purohit R, Arya A, Bojjawar G, Pelerin M, Van Petegem S, Proudhon H, Mukherjee S, Gerard C, Signor L, Mocuta C, Casati N, Suwas S, Chokshi AH, Thilly L (2019) Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction. Sci Rep 9(79). https://doi.org/10.1038/s41598-018-36472-3

  18. Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18(4):617. https://doi.org/10.1107/S0909049511002895. https://onlinelibrary.wiley.com/doi/abs/10.1107/S0909049511002895

    Google Scholar 

  19. Johnson G, King A, Honnicke MG, Marrow J, Ludwig W (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J Appl Crystallogr 41(2):310. https://doi.org/10.1107/S0021889808001726

    Google Scholar 

  20. Gardner KH, Hsiao B, Matheson RR, Wood B (1992) Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer 33(12):2483. https://doi.org/10.1016/0032-3861(92)91128-O. http://www.sciencedirect.com/science/article/pii/003238619291128O

    Google Scholar 

  21. Hsiao B, Chang IY, Sauer BB (1991) Isothermal crystallization kinetics of poly(ether ketone ketone) and its carbon-fibre-reinforced composites. Polymer 32(15):2799. https://doi.org/10.1016/0032-3861(91)90111-U. http://www.sciencedirect.com/science/article/pii/003238619190111U

    Google Scholar 

  22. Verma R, Kander R, Hsiao B, Wood B (1994) A study of the damage accumulation process in poly(aryl ether ketone ketone) and its AS4 carbon fiber reinforced composites. 1. Mechanical properties. Sci Eng Compos Mater 3. https://doi.org/10.1515/SECM.1994.3.4.227

  23. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206(1):33. https://doi.org/10.1046/j.1365-2818.2002.01010.x. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2818.2002.01010.x

    Google Scholar 

  24. King A, Guignot N, Deslandes JP, Pelerin M, Joosten I, Looff DD, Li J, Bertrand L, Rosenberg E, Dewaele A, Boulard E, Godec YL, Perrilat JP, Giovenco E, Morard G, Weitkamp T, Scheel M, Perrin J, Chevreau H, Itié JP (2019) Recent imaging developments at the PSICHE beamline, Integrating Mater Manuf Innov submitted

  25. Challier M, Besson J, Laiarinandrasana L, Piques R (2006) Damage and fracture of polyvinylidene fluoride (PVDF) at 20C: Experiments and modelling. Eng Fract Mech 73(1):79. https://doi.org/10.1016/j.engfracmech.2005.06.007. http://www.sciencedirect.com/science/article/pii/S0013794405001761

    Google Scholar 

  26. Boisot G, Laiarinandrasana L, Besson J, Fond C, Hochstetter G (2011) Experimental investigations and modeling of volume change induced by void growth in polyamide 11. Int J Solids Struct 48(19):2642. https://doi.org/10.1016/j.ijsolstr.2011.05.016. http://www.sciencedirect.com/science/article/pii/S0020768311001880

    Google Scholar 

  27. Xiong B, Lame O, Chenal JM, Men Y, Seguela R, Vigier G (2017) Critical stress and thermal activation of crystal plasticity in polyethylene: influence of crystal microstructure and chain topology. Polymer 118:192. https://doi.org/10.1016/j.polymer.2017.05.011. http://www.sciencedirect.com/science/article/pii/S0032386117304780

    Google Scholar 

  28. Xiong B, Lame O, Seguela R, Men Y (2018) Micro/macro-stress relationship and local stress distribution in polyethylene spherulites upon uniaxial stretching in the small strain domain. Polymer 140:215. https://doi.org/10.1016/j.polymer.2018.02.052. http://www.sciencedirect.com/science/article/pii/S0032386118301770

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge SOLEIL synchrotron for beam time allocation 20170058 and 20180689 and Arkema for providing the samples material. Yann Auriac (Centre des Matériaux) is acknowledged for helping to design the machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Pelerin.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelerin, M., King, A., Laiarinandrasana, L. et al. Development of a Versatile Mechanical Testing Device for In Situ Synchrotron Tomography and Diffraction Experiments. Integr Mater Manuf Innov 8, 378–387 (2019). https://doi.org/10.1007/s40192-019-00143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-019-00143-6

Keywords

Navigation