Skip to main content

Advertisement

Log in

PPLK+C: A Bioinformatics Tool for Predicting Peptide Ligands of Potassium Channels Based on Primary Structure Information

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Potassium channels play a key role in regulating the flow of ions through the plasma membrane, orchestrating many cellular processes including cell volume regulation, hormone secretion and electrical impulse formation. Ligand peptides of potassium channels are molecules used in basic and applied research and are now considered promising alternatives in the treatment of many diseases, such as cardiovascular diseases and cancer. Currently, there are various bioinformatics tools focused on the prediction of peptides with different activities. However, none of the current tools can predict ligand peptides of potassium channels. In this work, we developed a tool called PPLK+C; this is the first tool that can predict peptide ligands of potassium channels. We also evaluated several amino acid molecular features and four machine-learning algorithms for the prediction of potassium channel ligand peptides: random forest, nearest neighbors, support vector machine and artificial neural network. All the biological data used in this study for training and validating models were obtained from peptides with experimentally verified activity. PPLK+C is a bioinformatics software written in the Python programming language, which showed a high predictive capacity with a model generated with the random forest algorithm: 0.77 sensitivity, 0.94 specificity, 0.91 accuracy and 0.70 Matthews correlation coefficient. PPLK+C is a novel tool with a friendly interface that can be used for the discovery of novel ligand peptides of potassium channels with high reliability, using only primary structure information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527–3536

    Article  CAS  Google Scholar 

  2. Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 20:39–53

    Article  CAS  Google Scholar 

  3. Dutertre S, Lewis RJ (2010) Use of venom peptides to probe ion channel structure and function. J Biol Chem 285:13315–13320

    Article  CAS  Google Scholar 

  4. González C, Baez-Nieto D, Valencia I et al (2012) K(+) channels: function–structural overview. Compr Physiol 2:2087–2149. https://doi.org/10.1002/cphy.c110047

    Article  PubMed  Google Scholar 

  5. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790

    Article  CAS  Google Scholar 

  6. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982

    Article  CAS  Google Scholar 

  7. Suarez-Kurtz G, Vianna-Jorge R, Pereira BF et al (1999) Peptidyl inhibitors of shaker-type Kv1 channels elicit twitches in guinea pig ileum by blocking kv1.1 at enteric nervous system and enhancing acetylcholine release. J Pharmacol Exp Ther 289:1517–1522

    CAS  PubMed  Google Scholar 

  8. Koo GC, Blake JT, Talento A et al (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 158:5120–5128

    CAS  PubMed  Google Scholar 

  9. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP (2006) Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.89.21.10094

    Article  PubMed  Google Scholar 

  10. Price M, Lee SC, Deutsch C (1989) Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.86.24.10171

    Article  PubMed  Google Scholar 

  11. Kalman K, Pennington MW, Lanigan MD et al (1998) Shk-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem. https://doi.org/10.1074/jbc.273.49.32697

    Article  PubMed  Google Scholar 

  12. Ding L, Hao J, Luo X et al (2018) The Kv1.3 channel-inhibitory toxin BF9 also displays anticoagulant activity via inhibition of factor XIa. Toxicon. https://doi.org/10.1016/j.toxicon.2018.07.014

    Article  PubMed  Google Scholar 

  13. Aissaoui D, Mlayah-Bellalouna S, Jebali J et al (2018) Functional role of Kv1.1 and Kv1.3 channels in the neoplastic progression steps of three cancer cell lines, elucidated by scorpion peptides. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.01.144

    Article  PubMed  Google Scholar 

  14. Pennington MW, Czerwinski A, Norton RS (2018) Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2017.09.029

    Article  PubMed  Google Scholar 

  15. Gupta S, Kapoor P, Chaudhary K et al (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE. https://doi.org/10.1371/journal.pone.0073957

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuzmenkov AI, Krylov NA, Chugunov AO et al (2016) Kalium: a database of potassium channel toxins from scorpion venom. Database. https://doi.org/10.1093/database/baw056

    Article  PubMed  PubMed Central  Google Scholar 

  17. Otvos L, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem. https://doi.org/10.3389/fchem.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhadra P, Yan J, Li J et al (2018) AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep. https://doi.org/10.1038/s41598-018-19752-w

    Article  PubMed  PubMed Central  Google Scholar 

  19. Beltrán Lissabet JF, Belén LH, Farias JG (2019) AntiVPP 1.0: a portable tool for prediction of antiviral peptides. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2019.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  20. Agrawal P, Bhalla S, Chaudhary K et al (2018) In silico approach for prediction of antifungal peptides. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00323

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lata S, Sharma BK, Raghava GPS (2007) Analysis and prediction of antibacterial peptides. BMC Bioinform. https://doi.org/10.1186/1471-2105-8-263

    Article  Google Scholar 

  22. Manavalan B, Basith S, Shin TH et al (2017) MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget. https://doi.org/10.18632/oncotarget.20365

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jhong JH, Chi YH, Li WC et al (2019) DbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1030

    Article  PubMed  Google Scholar 

  24. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 28:374

    Article  Google Scholar 

  25. Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE. https://doi.org/10.1371/journal.pone.0177678

    Article  PubMed  PubMed Central  Google Scholar 

  26. Choe S (2002) Ion channel structure: potassium channel structures. Nat Rev Neurosci. https://doi.org/10.1038/nrn727

    Article  PubMed  Google Scholar 

  27. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–594

    CAS  PubMed  Google Scholar 

  28. Wulff H, Christophersen P, Colussi P et al (2019) Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov 18:339–357

    Article  CAS  Google Scholar 

  29. Ortiz E, Possani LD (2018) Scorpion toxins to unravel the conundrum of ion channel structure and functioning. Toxicon 150:17–27

    Article  CAS  Google Scholar 

  30. Chang KY, Yang JR (2013) Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE. https://doi.org/10.1371/journal.pone.0070166

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mei J, Fu Y, Zhao J (2018) Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition. J Theor Biol 456:41–48. https://doi.org/10.1016/j.jtbi.2018.07.040

    Article  PubMed  Google Scholar 

  32. Fernández-Ballester G, Fernández-Carvajal A, González-Ros JM, Ferrer-Montiel A (2011) Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics 3:932–953

    Article  Google Scholar 

  33. Salmaso V, Moro S (2018) Bridging molecular docking to molecular dynamics in exploring ligand–protein recognition process: an overview. Front Pharmacol 9:923

    Article  Google Scholar 

  34. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  Google Scholar 

  35. Larranaga P (2006) Machine learning in bioinformatics. Brief Bioinform. https://doi.org/10.1093/bib/bbk007

    Article  PubMed  Google Scholar 

  36. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  Google Scholar 

  37. Spänig S, Heider D (2019) Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min 12:7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to DIUFRO DI19-2015, DIUFRO DI12-PEO1 and DIUFRO DIE14-0001 projects and the UFRO scholarship of the University of La Frontera, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge G. Farias.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lissabet, J.F.B., Belén, L.H. & Farias, J.G. PPLK+C: A Bioinformatics Tool for Predicting Peptide Ligands of Potassium Channels Based on Primary Structure Information. Interdiscip Sci Comput Life Sci 12, 258–263 (2020). https://doi.org/10.1007/s12539-019-00356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00356-5

Keywords

Navigation