Skip to main content
Log in

Palaeolyngbya kerpii sp. nov., a large filamentous cyanobacterium with affinities to Oscillatoriaceae from the Lower Devonian Rhynie chert

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

The Lower Devonian Rhynie chert contains abundant fossil evidence of cyanobacteria. However, only a few of these fossils have been described. A newly discovered type of cyanobacterial filament is 22 to > 30 µm wide, and thus substantially larger than all filamentous cyanobacteria previously known from the Rhynie chert. Trichomes are uniseriate, composed of short, discoid cells not constricted at the cross walls, and enveloped in a distinct sheath. Because the filaments correspond in morphology to Palaeolyngbya barghoorniana, a fossil cyanobacterium described from the Precambrian, they are assigned to the fossil genus Palaeolyngbya and formally proposed as a new species, P. kerpii. Palaeolyngbya is attributed to the Oscillatoriaceae (Oscillatoriales) and compared to the modern genus Lyngbya sensu lato. All specimens of P. kerpii occur in a small area of clear chert intercalated between substrate layers, and thus support the hypothesis that substrate served as a conservation trap for delicate microbial life in the Rhynie setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Baron, M., S. Hillier, C.M. Rice, K. Czapnik, and J. Parnell. 2004. Fluids and hydrothermal alteration assemblages in a Devonian gold-bearing hot-spring system, Rhynie, Scotland. Transactions of the Royal Society Edinburgh, Earth Sciences 94: 309–324.

    Article  Google Scholar 

  • Broady, P.A., and A.L. Kibblewhite. 1991. Morphological characterization of Oscillatortiales (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarctic Science 3: 35–45.

    Article  Google Scholar 

  • Butterfield, N.J., A.H. Knoll, and K. Swett. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34: 1–84.

    Google Scholar 

  • Caires, T.A., G. de Mattos Lyra, G.S. Hentschke, A. de Gusmão Pedrini, C.L. Sant’Anna, and J.M. de Castro Nunes. 2018. Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): A new filamentous benthic marine taxon widely distributed along the Brazilian coast. Molecular Phylogenetics and Evolution 120: 196–211.

    Article  Google Scholar 

  • Channing, A. 2017. A review of active hot-spring analogues of Rhynie: Environments, habitats and ecosystems. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 373: 20160490.

    Article  Google Scholar 

  • Channing, A., and D. Edwards. 2009a. Silicification of higher plants in geothermally influenced wetlands: Yellowstone as a Lower Devonian Rhynie analog. Palaios 24: 505–521.

    Article  Google Scholar 

  • Channing, A., and D. Edwards. 2009b. Yellowstone hot spring environments and the palaeo-ecophysiology of Rhynie chert plants: Towards a synthesis. Plant Ecology & Diversity 2: 111–143.

    Article  Google Scholar 

  • Channing, A., and D. Edwards. 2013. Wetland megabias: Ecological and ecophysiological filtering dominates the fossil record of hot spring floras. Palaeontology 56: 523–556.

    Article  Google Scholar 

  • Channing, A., and D.E. Wujek. 2010. Preservation of protists within decaying plants from geothermally influenced wetlands of Yellowstone National Park, Wyoming, United States. Palaios 25: 347–355.

    Article  Google Scholar 

  • Chatchawan, T., J. Komárek, O. Strunecký, J. Šmarda, and Y. Peerapornpisal. 2012. Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogamie, Algologie 33: 41–59.

    Article  Google Scholar 

  • Comas-González, A.A., Y. Labaut-Betancourt, R. Peraza-Escarrá, et al. 2017. Ocurrencia de Limnoraphis robusta (Parakutty) Komárek et al. (Oscillatoriales, Cyanobacteria) en el embalse Hanabanilla (Cuba Central). Anales de Biología 39: 1–6.

    Article  Google Scholar 

  • Croft, W.N., and E.A. George. 1959. Blue-green algae from the Middle Devonian of Rhynie, Aberdeenshire. Bulletin of the British Museum of Natural History, Geology 3: 341–353.

    Google Scholar 

  • Dotzler, N., M. Krings, H. Kerp, H. Hass, R. Agerer, and T.N. Taylor. 2009. Mikroorganismen vor 400 Millionen Jahren, perfekt erhalten im unterdevonischen Rhynie Chert. Jahresbericht 2008 und Mitteilungen der Freunde der Bayerischen Staatssammlung für Paläontologie und Historische Geologie München e.V. 37: 49–62.

    Google Scholar 

  • Drouet, F. 1968. Revision of the classification of the Oscillatoriaceae. Monographs of the Academy of Natural Sciences of Philadelphia 15: 1–370.

    Google Scholar 

  • Dunlop, J.A., and R.J. Garwood. 2017. Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 373: 20160493.

    Article  Google Scholar 

  • Edwards, D.S., and A.G. Lyon. 1983. Algae from the Rhynie chert. Botanical Journal of the Linnean Society 86: 37–55.

    Article  Google Scholar 

  • Edwards, D., L. Dolan, and P. Kenrick. 2018. The Rhynie cherts: Our earliest terrestrial ecosystem revisited. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 373: 1–201.

    Google Scholar 

  • Engene, N., E.C. Rottacker, J. Kastovsky, T. Byrum, H. Choi, M.H. Ellisman, J. Komárek, and W.H. Gerwick. 2012. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology 62: 1171–1178.

    Article  Google Scholar 

  • Engene, N., A. Tronholm, and V.J. Paul. 2018. Uncovering cryptic diversity of Lyngbya: The new tropical marine cyanobacterial genus Dapis (Oscillatoriales). Journal of Phycology 54: 435–446.

    Article  Google Scholar 

  • Fjerdingstad, E. 1971. Dimensions and taxonomy of Oscillatoriaceae I. Oscillatoria limosa Ag. and Oscillatoria nitida Schkorb. emend. Hydrologie 33: 171–199.

    Google Scholar 

  • Geitler, L. 1932. Cyanophyceae von Europa unter Berücksichtigung der anderen Kontinente. In Die Algen (Dr. L. Rabenhorsts Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, 2nd ed.), vol. XIV, ed. R. Kolkwitz. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Geitler, L. 1960. Schizophyceen. 2nd ed. Handbuch der Pflanzenanatomie, Band VI, Teil 1. Berlin: Gebr. Borntraeger.

    Google Scholar 

  • Golubic, S., and S.J. Lee. 1999. Early cyanobacterial fossil record: Preservation, palaeoenvironments and identification. European Journal of Phycology 34: 339–348.

    Article  Google Scholar 

  • Gomont, M. 1892. Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie—Lyngbyées. Annales des Sciences Naturelles, Botanique (Série 7) 16: 91–264.

    Google Scholar 

  • Hermann, T.N. 1974. Nakhodki Massovykh Skopleniy Trikhomov v Rifee [Finds of massive accumulations of trichomorphs in the Riphean]. In Mikrofitofossilii Proterozya i Rannego Paleozoa SSSR [Microphytofossils of the Proterozoic and Early Paleozoic of the USSR], ed. B.V. Timofeev, 6–10. Leningrad: Nauka. (in Russian).

    Google Scholar 

  • Javaux, E.J., and A.H. Knoll. 2017. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. Journal of Paleontology 91: 199–229.

    Article  Google Scholar 

  • Karatygin, I.V., N.S. Snigirevskaya, and S.V. Vikulin. 2009. The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation. Paleontological Journal 43: 107–114.

    Article  Google Scholar 

  • Kenins, A. 2017. Validation of the noxious cyanophyte Microseira wollei (Farlow ex Gomont) G. B. McGregor & Sendall (Oscillatoriaceae). Notulae Algarum 43: 1–3.

    Google Scholar 

  • Kerp, H. 2017. Organs and tissues of Rhynie chert plants. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 373: 20160495.

    Article  Google Scholar 

  • Kerp, H., and H. Hass. 2009. Ökologie und Reproduktion der frühen Landpflanzen. Berichte der Reinhold-Tüxen-Gesellschaft 21: 111–127.

    Google Scholar 

  • Kerp, H., H. Hass, and V. Mosbrugger. 2001. New data on Nothia aphylla Lyon 1964 ex El-Saadawy et Lacey 1979, a poorly known plant from the Lower Devonian Rhynie chert. In Plants invade the land: Evolutionary and environmental perspectives, eds. P.G. Gensel and D. Edwards, 52–82. New York: Columbia University Press.

    Google Scholar 

  • Kerp, H., N.H. Trewin, and H. Hass. 2004. New gametophytes from the Early Devonian Rhynie chert. Transactions of the Royal Society of Edinburgh, Earth Sciences 94: 411–428.

    Article  Google Scholar 

  • Kerp, H., C. Wellman, M. Krings, P. Kearney, and H. Hass. 2013. Reproductive organs and in situ spores of Asteroxylon mackiei Kidston et Lang, the most complex plant from the Lower Devonian Rhynie Chert. International Journal of Plant Sciences 174: 293–308.

    Article  Google Scholar 

  • Kidston, R., and W.H. Lang. 1921. On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part IV. Restorations of the vascular cryptogams, and discussion of their bearing on the general morphology of the Pteridophyta and the origin of the organisation of land-plants. Transactions of the Royal Society Edinburgh 52: 831–854.

    Article  Google Scholar 

  • Klatt, C.G., J.M. Wood, D.B. Rusch, M.M. Bateson, N. Hamamura, J.F. Heidelberg, A.R. Grossman, D. Bhaya, F.M. Cohan, M. Kühl, D.A. Bryant, and D.M. Ward. 2011. Community ecology of hot spring cyanobacterial mats: Predominant populations and their functional potential. ISME Journal 5: 1262–1278.

    Article  Google Scholar 

  • Komárek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. European Journal of Phycology 51: 346–353.

    Article  Google Scholar 

  • Komárek, J. 2018. Delimitation of the family Oscillatoriaceae (Cyanobacteria) according to the modern polyphasic approach (introductory review). Brazilian Journal of Botany 41: 449–456.

    Article  Google Scholar 

  • Komárek, J., and K. Anagnostidis. 2007. Cyanoprokaryota—2. Teil/Part 2: Oscillatoriales. In Süßwasserflora von Mitteleuropa, vol. 19/2, eds. B. Büdel, G. Gärtner, L. Krienitz, and M. Schagerl. Heidelberg: Elsevier.

    Google Scholar 

  • Komárek, J., E. Zapomělová, J. Šmarda, J. Kopecký, E. Rejmánková, J. Woodhouse, B.A. Neilan, and J. Komárková. 2013. Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov. Fottea 13: 39–52.

    Article  Google Scholar 

  • Krings, M. and C.J. Harper. 2019. A microfossil resembling Merismopedia (Cyanobacteria) from the 410-million-year-old Rhynie and Windyfield cherts—Rhyniococcus uniformis revisited. Nova Hedwigia 108: 17–35.

    Article  Google Scholar 

  • Krings, M., H. Kerp, H. Hass, T.N. Taylor, and N. Dotzler. 2007. A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie chert. Review of Palaeobotany and Palynology 146: 265–276.

    Article  Google Scholar 

  • Krings, M., H. Hass, H. Kerp, T.N. Taylor, R. Agerer, and N. Dotzler. 2009. Endophytic cyanobacteria in a 400-million-year-old land plant: A scenario for the origin of a symbiosis? Review of Palaeobotany and Palynology 153: 62–69.

    Article  Google Scholar 

  • Krings, M., C.J. Harper, H. Kerp, and E.L. Taylor. 2018. Exceptional preservation of sessile, long-stalked microorganisms in the Lower Devonian Windyfield chert (Scotland). In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, eds. M. Krings, C.J. Harper, N.R. Cúneo, and G.W. Rothwell, 519–526. London: Elsevier.

    Chapter  Google Scholar 

  • Mandal, J., P.K. Maithy, G. Barman, and K.K. Verma. 1984. Microbiota from the Kushalgarh Formation, Delhi Supergroup, India. Palaeobotanist 32: 1–19.

    Google Scholar 

  • Mark, D.F., C.M. Rice, A.E. Fallick, N.H. Trewin, M.R. Lee, A. Boyce, and J.K.W. Lee. 2011. 40Ar/39Ar dating of hydrothermal activity, biota and gold mineralization in the Rhynie hot-spring system, Aberdeenshire, Scotland. Geochimica et Cosmochimica Acta 75: 555–569.

    Article  Google Scholar 

  • McGregor, G.B., and B.C. Sendall. 2014. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. Journal of Phycology 51: 109–119.

    Article  Google Scholar 

  • Moczydłowska, M. 2008. New records of late Ediacaran microbiota from Poland. Precambrian Research 167: 71–92.

    Article  Google Scholar 

  • Mühlsteinová, R., T. Hauer, P. De Ley, and N. Pietrasiak. 2018. Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point. Preslia 90: 151–169.

    Article  Google Scholar 

  • Oren, A., D. Ionescu, M.Y. Hindiyeh, and H.I. Malkawi. 2009. Morphological, phylogenetic and physiological diversity of cyanobacteria in the hot springs of Zerka Ma’in, Jordan. BioRisk 3: 69–82.

    Article  Google Scholar 

  • Parry, S.F., S.R. Noble, Q.G. Crowley, and C.H. Wellman. 2011. A high precision U–Pb age constraint on the Rhynie chert Konservat-Lagerstätte: Time scale and other implications. Journal of the Geological Society of London 168: 863–872.

    Article  Google Scholar 

  • Powell, C.L., N.H. Trewin, and D. Edwards. 2000. Palaeoecology and plant succession in a borehole through the Rhynie cherts, Lower Old Red Sandstone, Scotland. Geological Society of London, Special Publication 180: 439–457.

    Article  Google Scholar 

  • Ramos, V., J. Morais, and V.M. Vasconcelos. 2017. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Scientific Data 4: 170054.

    Article  Google Scholar 

  • Rice, C.M., N.H. Trewin, and L.I. Anderson. 2002. Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: An early terrestrial hot spring system. Journal of the Geological Society of London 159: 203–214.

    Article  Google Scholar 

  • Schopf, J.W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. Journal of Paleontology 42: 651–688.

    Google Scholar 

  • Schopf, J.W. 1992. Informal revised classification of Proterozoic microfossils. In The Proterozoic Biosphere. A Multidisciplinary Approach, eds. J.W. Schopf and C. Klein, 1121–1166. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Schopf, J.W. 2012. The fossil record of cyanobacteria. In Ecology of Cyanobacteria II. Their Diversity in Space and Time, eds. B.A. Whitton and M. Potts, 15–36. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Schopf, J.W., V.N. Sergeev, and A.B. Kudryavtsev. 2015. A new approach to ancient microorganisms: Taxonomy, paleoecology, and biostratigraphy of the Lower Cambrian Berkuta and Chulaktau microbiotas of South Kazakhstan. Journal of Paleontology 89: 695–729.

    Article  Google Scholar 

  • Sergeev, V.N., M. Sharma, and Y. Shukla. 2012. Proterozoic fossil cyanobacteria. Palaeobotanist 61: 189–358.

    Google Scholar 

  • Shi, M., Q. Feng, M.Z. Khan, and S. Zhu. 2017. An eukaryote-bearing microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China, and its significance. Precambrian Research 303: 709–726.

    Article  Google Scholar 

  • Shukovsky, E.S., and L.N. Halfen. 1976. Cellular differentiation of terminal regions of trichomes of Oscillatoria princeps (Cyanophyceae). Journal of Phycology 12: 336–342.

    Google Scholar 

  • Stoyanov, P., D. Moten, R. Mladenov, B. Dzhambazov, and I. Teneva. 2014. Phylogenetic relationships of some filamentous cyanoprokaryotic species. Evolutionary Bioinformatics 10: 39–49.

    Article  Google Scholar 

  • Strother, P.K., A.H. Knoll, and E.S. Barghoorn. 1983. Microfossils from the late Precambrian Narssârssuk Formation, northwest Greenland. Palaeontology 26: 1–32.

    Google Scholar 

  • Strullu-Derrien, C. 2018. Fossil filamentous microorganisms associated with plants in early terrestrial environments. Current Opinion in Plant Biology 44: 122–128.

    Article  Google Scholar 

  • Taylor, T.N., and M. Krings. 2015. A colony-forming microorganism with probable affinities to the Chroococcales (Cyanobacteria) from the Lower Devonian Rhynie chert. Review of Palaeobotany and Palynology 219: 147–156.

    Article  Google Scholar 

  • Taylor, T.N., H. Hass, and H. Kerp. 1997. A cyanolichen from the Lower Devonian Rhynie chert. American Journal of Botany 84: 992–1004.

    Article  Google Scholar 

  • Trewin, N.H., and S.R. Fayers. 2016. Macro to micro aspects of the plant preservation in the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Earth and Environmental Sciences Transactions of the Royal Society of Edinburgh 106: 67–80.

    Article  Google Scholar 

  • Trewin, N.H., and H. Kerp. 2017. The Rhynie and Windyfield cherts, Early Devonian, Rhynie, Scotland. In Terrestrial Conservation Lagerstätten. Windows into the Evolution of Life on Land, eds. N.C. Fraser and H.D. Sues, 1–38. Edinburgh: Dunedin Academic Press.

    Google Scholar 

  • Walter, J.M., F.H. Coutinho, B.E. Dutilh, J. Swings, F.L. Tompson, and C.C. Thompson. 2017. Ecogenomics and taxonomy of cyanobacteria phylum. Frontiers in Microbiology 8: 2132.

    Article  Google Scholar 

  • Wang, F., X. Zhang, and R. Guo. 1983. The Sinian microfossils from Jinning, Yunnan, South West China. Precambrian Research 23: 133–175.

    Article  Google Scholar 

  • Ward, D.M., R.W. Castenholz, and S.R. Miller. 2012. Cyanobacteria in geothermal habitats. In Ecology of Cyanobacteria II: Their Diversity in Space and Time, ed. B.A. Whitton, 39–63. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Wellman, C.H. 2006. Spore assemblages from the Lower Devonian ‘Lower Old Red Sandstone’ deposits of the Rhynie outlier, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 97: 167–211.

    Article  Google Scholar 

  • Wellman, C.H. 2017. Palaeoecology and palaeophytogeography of the Rhynie chert plants: Further evidence from integrated analysis of in situ and dispersed spores. Philosophical Transactions of the Royal Society of London (B: Biological Sciences) 373: 20160491.

    Article  Google Scholar 

  • Wellman, C.H., H. Kerp, and H. Hass. 2006. Spores of the Rhynie chert plant Aglaophyton (Rhynia) major (Kidston and Lang) D.S. Edwards, 1986. Review of Palaeobotany and Palynology 142: 229–250.

    Article  Google Scholar 

  • Yakschin, M.S. 1991. Vodoroslevaya mikrobiota nizhnego rifeya Anabarskogo podnyatia (Algal microbiota from the Lower Riphean deposits of Anabar uplift). Novosibirsk: Nauka. (in Russian).

    Google Scholar 

  • Yun, Z. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. Journal of Paleontology 55: 485–506.

    Google Scholar 

Download references

Acknowledgements

This article is dedicated to Hans Kerp of Münster, Germany, on the occasion of his 65th birthday. I join the paleobotanical community in saluting Hans, who has always been a highly respected mentor, colleague, and trusted friend. I am indebted to Stefan Sónyi and Helmut Martin (both Munich, Germany) for technical assistance. The paper benefited greatly from the constructive comments and suggestions of Vladimir N. Sergeev (Moscow, Russia) and Charles H. Wellman (Sheffield, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krings.

Additional information

Handling Editor: Benjamin Bomfleur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krings, M. Palaeolyngbya kerpii sp. nov., a large filamentous cyanobacterium with affinities to Oscillatoriaceae from the Lower Devonian Rhynie chert. PalZ 93, 377–386 (2019). https://doi.org/10.1007/s12542-019-00475-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-019-00475-w

Keywords

Navigation