Skip to main content
Log in

Experimental study and numerical analysis on heavy-duty cast steel universal hinged supports for large span structures

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Heavy-duty cast steel universal hinged supports are gaining increasing usage in modern large-span structures, offering extremely large individual load carrying capacity and universal rotation ability which is preferable to release temperature effects and to improve force conditions of lower structures. This paper presents a full-scale experimental study and elastic-plastic finite element (FE) analysis on the performance of an innovative heavy-duty cast steel support. The support is composed of three main components, i.e. an upper one, a lower one and an intermediate rotation pad. External loads are designed to be passed and transferred through the contact interaction of the three casting parts. The support studied in this paper is expected to possess a higher capacity than existing supports while having the ability of universal rotation under heavy loads. Three full-scale static experiments corresponding to three typical load cases (i.e. tension-shear load case, compression-shear load case, and shear-tension load case, respectively) have been carried out employing a multifunctional loading device. A three-dimensional FE model was developed using the commercial software ANSYS, considering the contact behavior between the support components and accounting for both material and geometrical nonlinearities. The model was validated against the experimental results reported in this paper. The performance of this support was evaluated in accordance with a Chinese national code ‘Technical specification for application of connections of structural steel casting (CECS 235:2008)’. This study concluded that this type of support performs well and that it could be used for realistic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Society for Testing and Materials (ASTM) (1993). Standard Specication for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service. A216 A216M-93, West Conshohocken, Philadelphia.

    Google Scholar 

  • Armitage, R. (1983). Development of cast node joints for offshore production platforms. Solidication technology in the foundry and cast house, The Metals Society, London, pp. 385–391.

    Google Scholar 

  • Feng, C. (2008). SolidWorks 2007: From beginner to master. POSTS & TELECOM PRESS. Beijing, China.

    Google Scholar 

  • China Association for Engineering Construction Standardization (2008). “Technical specification for application of connections of structural steel Casting”. CECS 235:2008, China (in Chinese).

    Google Scholar 

  • China State Bureau of Standards (1987). Carbon steel castings suitable for welded structure. GB 7659–87, China (in Chinese).

    Google Scholar 

  • China State Bureau of Technical Supervision (1994). High strength low alloy structural steel. GB/T 1591–94, China (in Chinese).

    Google Scholar 

  • De Oliveira, J. C., Willibald, S., Packer, J. A., Christopoulos, C., and Verhey, T. (2006). “Cast steel nodes in tubular construction-Canadian experience.” Proc. 11 th Int. Symp. and IIW Int. Conf. on Tubular Structures, Québec, pp. 523–529.

    Google Scholar 

  • Deutsches Institut für Normung (DIN) (1992). Generalpurpose steel castings with enhanced weldabiltiy and higher toughness-Technical delivery conditions. DIN 17182, German.

    Google Scholar 

  • International Organization for Standardization (ISO) (1991). Cast carbon steels for general engineering purposes. ISO 3755:1991, Geneva.

    Google Scholar 

  • Japanese Industrial Standards (JIS) (1991). Steel Castings for Welded Structure. JIS G 5102, Japan.

    Google Scholar 

  • Marston, G. J. (1984). “Steel castings solve offshore structural problems.” Casting Engineerings & Foundry World, 7(2), pp. 5–9.

    Google Scholar 

  • Marston, G. J. (1990). “Better cast than fabricated.” Foundryman, 83(3), pp. 108–113.

    Google Scholar 

  • Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (2003). Code for design of steel structures. GB 50017-2003, China (in Chinese).

    Google Scholar 

  • Moaveni, S. (1999). Finite element analysis: Theory and application with ANSYS. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Poweleit, D. and Monroe, R. (2004). “Applying steel castings in strucutures.” Proc, SEAoT 2004 State Conf., Lakeway, Tex.

    Google Scholar 

  • Schober, H. (2003). “Cast steel joints for tubular structures.” Proc., 10 th Int. Symp. on Tubular Structures, Spain, pp. 143–152.

    Google Scholar 

  • TS1 Workroom. (2006). “Design and Experimental Study of All Direction Bearings in Tanzania State Gymnasium.” Proc. 1 st National Conference on Building Structure Technology, China, pp. 459–461.

    Google Scholar 

  • Veselcic, M, Herion, S., and Puthli, R. (2003). “Cast steel in tubular bridges-New applications and technologies.” Proc., 10 th Int. Symp. on Tubular Structures, Spain, pp. 135–142.

    Google Scholar 

  • Nakasone, Y. and Yoshimoto, S. (2006). Engineering Analysis with ANSYS Software, Elsevier Butterworth-Heinemann.

    Google Scholar 

  • Hong, Z. (2003). Experimental research on hysteretic property of large diameter space KK type tubular joints. Master degree thesis of TongJi University, China (in Chinese).

    Google Scholar 

  • Zhang, J., Zhang, W., and Zhang, Y. (2004). “Study and Execution of the Multi-functional Experimental Facility.” Industrial construction, 34(3), pp. 40–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Gong, C., Zhang, S. et al. Experimental study and numerical analysis on heavy-duty cast steel universal hinged supports for large span structures. Int J Steel Struct 10, 99–114 (2010). https://doi.org/10.1007/BF03249516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03249516

Keywords

Navigation