Skip to main content
Log in

Revealing the Mechanism of EGCG, Genistein, Rutin, Quercetin, and Silibinin Against hIAPP Aggregation via Computational Simulations

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

To inhibit hIAPP aggregation and reduce toxicity of its oligomers are one of the potential strategies for the treatment of Type 2 diabetes (T2D). It has been reported that there is an effective inhibitory effect on hIAPP aggregation by five natural flavonoids, including Genistein, Rutin, Quercetin, Epigallocatechin gallate (EGCG), and Silibinin, which are widely found in our daily food. However, the detailed mechanisms to inhibit hIAPP aggregation remain unclear. Here, we explore the mechanisms of the five flavonoids against hIAPP aggregation by molecular docking and molecular dynamics simulations. We show that these flavonoids can disaggregate Chain A and Chain B of hIAPP to reduce the extended conformation by binding with two regions of hIAPP, Leu12–Ala13–Asn14 and Asn31–Val32–Gly33–Ser34–Asn35, with the inhibitory ability of Genistein > Rutin > Quercetin > EGCG > Silibinin. These five compounds exhibit a common mechanism for disaggregation of the hIAPP pentamer; that is, they loosen the two nearest peptide chains to potentially destroy the hIAPP oligomer. Mutations of eight key residues remarkably affected by the flavonoids indicate that the secondary structures of the hIAPP pentamer change from β-sheet to be random coil, thereby to destroy its structural stability; moreover, the 28th (Ser), 12th (Leu) and 32nd (Val) amino acids exhibit significant effects on structural stability of the hIAPP pentamer, providing an important hint that these amino acids can be considered as potential targets for design of new candidate inhibitors against hIAPP oligomers. This work is beneficial to understanding of mechanism of these inhibits against hIAPP aggregation and will facilitate screening, modification, and design of new inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoskin MA, Bray GA, Hattaway K, Khare-Ranade PA, Pomeroy J, Semler LN, Weinzierl VA, Wylie-Rosett J (2014) Prevention of diabetes through the lifestyle intervention: lessons learned from the diabetes prevention program and outcomes study and its translation to practice. Curr Nutr Rep 3(4):364–378. https://doi.org/10.1007/s13668-014-0094-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oyebode OA, Erukainure OL, Chukwuma CI, Ibeji CU, Koorbanally NA, Islam S (2018) Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Biomed Pharmacother 106:1116–1125. https://doi.org/10.1016/j.biopha.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  3. Saumya M, Subin EK, Suchithra TV (2019) Network analysis of MPO and other relevant proteins involved in diabetic foot Ulcer and other diabetic complications. Interdiscip Sci Comput Life Sci 11(2):180–190. https://doi.org/10.1007/s12539-017-0258-z

    Article  CAS  Google Scholar 

  4. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  Google Scholar 

  5. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826. https://doi.org/10.1152/physrev.00042.2009

    Article  CAS  PubMed  Google Scholar 

  6. Mukherjee A, Morales-Scheihing D, Butler PC, Soto C (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol Med 21(7):439–449. https://doi.org/10.1016/j.molmed.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426(6968):900–904. https://doi.org/10.1038/nature02264

    Article  CAS  PubMed  Google Scholar 

  8. Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368(6473):756–760. https://doi.org/10.1038/368756a0

    Article  CAS  PubMed  Google Scholar 

  9. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511. https://doi.org/10.1038/416507a

    Article  CAS  PubMed  Google Scholar 

  10. Aitken JF, Loomes KM, Riba-Garcia I, Unwin RD, Prijic G, Phillips AS, Phillips ARJ, Wu D, Poppitt SD, Ding K, Barran PE, Dowsey AW, Cooper GJS (2017) Rutin suppresses human-amylin/hIAPP misfolding and oligomer formation in vitro, and ameliorates diabetes and its impacts in human-amylin/hIAPP transgenic mice. Biochem Biophys Res Commun 482(4):625–631. https://doi.org/10.1016/j.bbrc.2016.11.083

    Article  CAS  PubMed  Google Scholar 

  11. Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H, Liu X, Zheng L, Huang K (2012) Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Biophys Res Commun 419(3):495–499. https://doi.org/10.1016/j.bbrc.2012.02.042

    Article  CAS  PubMed  Google Scholar 

  12. Ren B, Liu Y, Zhang Y, Cai Y, Gong X, Chang Y, Xu L, Zheng J (2018) Genistein: a dual inhibitor of both amyloid beta and human islet amylin peptides. ACS Chem Neurosci 9(5):1215–1224. https://doi.org/10.1021/acschemneuro.8b00039

    Article  CAS  PubMed  Google Scholar 

  13. López LC, Varea O, Navarro S, Carrodeguas JA, Sanchez de Groot N, Ventura S, Sancho J (2016) Benzbromarone, quercetin, and folic acid inhibit amylin aggregation. Int J Mol Sci 17(6):964

    Article  Google Scholar 

  14. Xu ZX, Ma GL, Zhang Q, Chen CH, He YM, Xu LH, Zhou GR, Li ZH, Yang HJ, Zhou P (2017) Inhibitory mechanism of epigallocatechin gallate on fibrillation and aggregation of amidated human islet amyloid polypeptide. Chemphyschem 18(12):1611–1619. https://doi.org/10.1002/cphc.201700057

    Article  CAS  PubMed  Google Scholar 

  15. Simon L, Imane A, Srinivasan KK, Pathak L, Daoud I (2017) In silico drug-designing studies on flavanoids as anticolon Cancer Agents: pharmacophore mapping, molecular docking, and monte carlo method-based qsar modeling. Interdiscip Sci Comput Life Sci 9(3):445–458. https://doi.org/10.1007/s12539-016-0169-4

    Article  CAS  Google Scholar 

  16. Moore S, Sonar K, Bharadwaj P, Deplazes E, Mancera R (2018) Characterisation of the structure and oligomerisation of islet amyloid polypeptides (IAPP): a review of molecular dynamics simulation studies. Molecules 23(9):2142

    Article  Google Scholar 

  17. Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46(47):13505–13522. https://doi.org/10.1021/bi701427q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem Substance and Compound databases. Nucleic Acids Res 44(D1):D1202–D11213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2010) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  Google Scholar 

  20. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenman DJ, Wang C, Garcia AE (2016) Characterization of abeta monomers through the convergence of ensemble properties among simulations with multiple force fields. J Phys Chem B 120(2):259–277. https://doi.org/10.1021/acs.jpcb.5b09379

    Article  CAS  PubMed  Google Scholar 

  22. Liang G, Zhao J, Yu X, Zheng J (2013) Comparative molecular dynamics study of human islet amyloid polypeptide (IAPP) and rat IAPP oligomers. Biochemistry 52(6):1089–1100. https://doi.org/10.1021/bi301525e

    Article  CAS  PubMed  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  24. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersena HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52(1):24–34

    Article  Google Scholar 

  27. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  28. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962

    Article  CAS  Google Scholar 

  29. Laskowski RA, Swindells MB (2011) LigPlot + : multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  30. Khan MKA, Akhtar S, Arif JM (2018) Structural Insight into the Mechanism of Dibenzo[a, l]pyrene and Benzo[a]pyrene-Mediated cell proliferation using molecular docking simulations. Interdiscip Sci Comput Life Sci 10(4):653–673. https://doi.org/10.1007/s12539-017-0226-7

    Article  CAS  Google Scholar 

  31. Qiao Y, Zhang MZ, Liang YN, Zheng J, Liang GZ (2017) A computational study of self-assembled hexapeptide inhibitors against amyloid-beta (A beta) aggregation. Phys Chem Chem Phys 19(1):155–166. https://doi.org/10.1039/c6cp07341g

    Article  CAS  Google Scholar 

  32. Wilcox G (2005) Insulin and insulin resistance. Clin Biochem Rev 26(2):19–39

    PubMed  PubMed Central  Google Scholar 

  33. Buchanan LE, Dunkelberger EB, Tran HQ, Pin-Nan C, Chi-Cheng C, Ping C, Raleigh DP, Pablo JJ, De Nowick JS, Zanni MT (2013) Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc Natl Acad Sci USA 110(48):19285–19290

    Article  CAS  Google Scholar 

  34. Fan HM, Gu RX, Wang YJ, Pi YL, Zhang YH, Xu Q, Wei DQ (2015) Destabilization of Alzheimer’s Abeta42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations. J Phys Chem B 119(34):11196–11202. https://doi.org/10.1021/acs.jpcb.5b03116

    Article  CAS  PubMed  Google Scholar 

  35. Choudhary AK (2018) Aspartame: should Individuals with Type II Diabetes be Taking it? Curr Diabetes Rev 14(4):350–362. https://doi.org/10.2174/1573399813666170601093336

    Article  CAS  PubMed  Google Scholar 

  36. Fernández-Gómez I, Sablón-Carrazana M, Bencomo-Martínez A, Domínguez G, Lara-Martínez R, Altamirano-Bustamante NF, Jiménez-García LF, Pasten-Hidalgo K, Castillo-Rodríguez RA, Altamirano P (2018) Diabetes drug discovery: hIAPP1–37 polymorphic amyloid structures as novel therapeutic targets. Molecules 23(3):686

    Article  Google Scholar 

  37. Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci Comput Life Sci 11(2):320–328. https://doi.org/10.1007/s12539-019-00327-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31571782 and 31771975) and the Natural Science Foundation of Chongqing CSTC (No. cstc2018jcyjAX0765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhao Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lv, Y., Jin, L. et al. Revealing the Mechanism of EGCG, Genistein, Rutin, Quercetin, and Silibinin Against hIAPP Aggregation via Computational Simulations. Interdiscip Sci Comput Life Sci 12, 59–68 (2020). https://doi.org/10.1007/s12539-019-00352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00352-9

Keywords

Navigation