Skip to main content

Advertisement

Log in

pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a novel free AgNPs composite, St-A-E/M, and nanocomposite beads, St-A-E/M-Ag, as a novel drug carrier were successfully prepared and used as controlled-release drug delivery systems for methyl prednisolone as a model drug. The structure of the resulted materials was identified using UV–Vis, SEM, EDX, XRD, FTIR, TEM, DLS, AFM and TGA/DTG spectroscopic techniques. The TEM and DLS results demonstrated that the incorporated AgNPs in the polymer matrix were spherical with diameters ranging from 50 to 111 nm. The influence of contact time, temperature, content of initial pH and Ag nanoparticles on the load and release behaviors of drug model was investigated under static conditions. The results indicated that the % release of drug model from the nanocomposite in different amounts of AgNPs was rather higher in comparison with the corresponding free-NPs composite. On the other hand, the results showed that the % release of drug increased by the increase in AgNPs content until 3.3% (V/V) in the polymer matrix, whereas that released beyond it was decreased. The maximum of release was also found within 9 h and at pH 7.4 for the nanocomposite. Furthermore, different release kinetic was employed for the description of the release process. Also, the nanocomposite exhibited higher antibacterial activity compared to the corresponding free-NPs composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh V, Singh SK, Pandey S, Sanghi R (2011) Synthesis and characterization of guar gum templated hybrid nano silica. Int J Biol Macromol 49(2):233–240

    CAS  PubMed  Google Scholar 

  2. Wang W, Kang Y, Wang A (2013) One-step fabrication in aqueous solution of a granularalginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101–111

    Google Scholar 

  3. Atta AM, Ismail HS, Elsaaed AM (2012) Application of anionic acryl amide based hydrogels in the removal of heavy metals from waste water. J Appl Polym Sci 123:2500–2510

    CAS  Google Scholar 

  4. Mun KS, Alvarez SD, Choi WY, Sailor MJ (2010) A stable, label-free optical interferometric biosensor based on TiO2 nano-tube arrays. ACS Nano 4:2070–2076

    CAS  PubMed  Google Scholar 

  5. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2000

    CAS  Google Scholar 

  6. Bhattacharyya R, Kumar Ray S, Mandal B (2013) A systematic method of synthesizing composite superabsorbent hydrogels from crosslink copolymer for removal of textile dyes from water. J Ind Eng Chem 19:1191–1203

    CAS  Google Scholar 

  7. Hoffmann J, Plotner M, Kuckling D, Fischer WJ (1999) Photo patterning of thermally sensitive hydrogels useful for microactuators. Sens Actuators A Phys 77:139–144

    CAS  Google Scholar 

  8. Santoni-Rugiu P, Sykes PJ (2007) Healing of wounds and the development of surgery. A history of plastic surgery. Springer, Berlin, Heidelberg, pp 39–78

    Google Scholar 

  9. Wang HX, Zhao YX, Wang HY, Gong JB, He HN, Shin MC, Yang VC, Huang YZ (2014) Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J Control Release 192:47–56

    CAS  PubMed  Google Scholar 

  10. Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26:382–392

    CAS  PubMed  Google Scholar 

  11. Pan QX, Yao L, Williams GR, Tao L, Yang HH, Li HY (2016) Lacto bionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym 151:812–820

    CAS  PubMed  Google Scholar 

  12. Lučić M, Milosavljević N, Radetić M, Šaponjić Z, Radoičić M, Krušić MK (2014) The potential application of TiO2/hydrogel nanocomposite for removal of various textile azo dyes. Sep Purif Technol 122:206–216

    Google Scholar 

  13. Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly(acrylic acid)–carrageenan hydrogels. Radiat Phys Chem 69:481–486

    CAS  Google Scholar 

  14. Daniel-da-Silva AL, Moreira J, Neto R, Estrada AC, Gil AM, Trindade T (2011) Impact of magnetic nanofillers in the swelling and release properties of carrageenan hydrogel nanocomposites. Carbohydr Polym 87:328–335

    Google Scholar 

  15. Li J, Lu J, Li Y (2009) Carboxyl methylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112(1):261–268

    CAS  Google Scholar 

  16. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P (2011) Synthesis and characterization of silver/montmorillonite/chitosan bio-nanocomposites by chemical reduction method and their antibacterial activity. Int J Nano Med 6:271–284

    CAS  Google Scholar 

  17. Dul M, Paluch KJ, Kelly H, Healy AM, Sasse A, Tajber L (2015) Self-assembled carrageenan/protamine polyelectrolyte nanoplexes—investigation of critical parameters governing their formation and characteristics. Carbohydr Polym 123:339–349

    CAS  PubMed  Google Scholar 

  18. Alcantara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20:9495–9504

    CAS  Google Scholar 

  19. Anirudhan TS, Parvathy J (2014) Novel semi-IPN based on crosslinked carboxymethyl starch and clay for the in vitro release of theophylline. Int J Biol Macromol 67:238–245

    CAS  PubMed  Google Scholar 

  20. Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23:381–404

    CAS  Google Scholar 

  21. Khaled SA, Burley JC, Alexander MR, Robert CJ (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 461:105–111

    Google Scholar 

  22. Liu WF, Kang CZ, Kong M, Li Y, Yi A, Cheng XJ (2012) Controlled release behaviors of chitosan/glycerophosphate thermo-sensitive hydrogels. Front Mater Sci 6:250–258

    Google Scholar 

  23. Abdel-Halim ES, Al-Deyab S (2014) Antimicrobial activity of silver/starch/polyacrylamide nanocomposite. Int J Biol Macromol 68:33–38

    CAS  PubMed  Google Scholar 

  24. Li H, Gao X, Wang Y, Zhang X, Tong Z (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279

    CAS  PubMed  Google Scholar 

  25. Xiao C, Xu S (2013) Enhancing the formation of starch-based hybrid hydrogel by incorporating carboxyl groups into starch chains. J Wuhan Univ Technol Mater Sci Ed 28:1008–1011

    CAS  Google Scholar 

  26. Petrus R, Warchol JK (2005) Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res 39:819–830

    CAS  PubMed  Google Scholar 

  27. Abdel-Halim ES, Al-Deyab S (2014) Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym 75:1–8

    CAS  Google Scholar 

  28. Alborzi S, Lim L, Kakuda Y (2014) Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under in vitro conditions. LWT Food Sci Technol 59:383–388

    CAS  Google Scholar 

  29. Barkhordari S, Yadollahi M, Namazi H (2014) pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res 21(6):1–9

    CAS  Google Scholar 

  30. Hezaveh H, Muhamad II (2012) Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. Int J Biol Macromol 50(5):1334–1340

    CAS  PubMed  Google Scholar 

  31. Yadav MI, Gade A (2009) Silver nanoparticle as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    PubMed  Google Scholar 

  32. Bhowmick S, Mohanty S, Koul V (2016) Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems. J Mater Sci Mater Med 27:160–172

    PubMed  Google Scholar 

  33. Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20:177–189

    Google Scholar 

  34. Hezaveh H, Muhamad II (2012) The effect of nanoparticles on gastrointestinal release from modified κ-carrageenan nanocomposite hydrogels. Carbohydr Polym 89:138–145

    CAS  PubMed  Google Scholar 

  35. Alshehri SM, Aldalbahi A, Al-hajji AB, Chaudhary AA, Panhuis MI, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236

    CAS  PubMed  Google Scholar 

  36. Babić MM, Božić BD, Filipović JM, Ušćumlić GS, Tomić SLJ (2016) Evaluation of novel anti proliferative controlled drug delivery system based on poly(2-hydroxypropylacrylate/itaconic acid) hydrogels and nickel complex with Oxaprozin. Mater Lett 163:214–217

    Google Scholar 

  37. Nematidil N, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly(acrylic Acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J Hazard Mater 351:38–53

    Google Scholar 

  38. Bose D, Chatterjee S (2015) Antibacterial activity of green synthesized silver nanoparticles using vasaka (Justicia adhatoda L.) leaf extract. Indian J Microbiol 55(2):163–167

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rama Subba Reddy P, Madhusudana Rao K, Krishna Rao KS, Shchipunov Y, Ha CS (2014) Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications. Macromol Res 22:832–842

    Google Scholar 

  40. Lu J, Li Y, Hu D, Chen X, Liu Y, Wang L, Ashraf MA, Zhao Y (2016) One-step synthesis of interpenetrating network hydrogels: environment sensitivities and drug delivery properties. Saudi J Biol Sci 23:522–531

    Google Scholar 

  41. Spasojević J, Radosavljević A, Krstić J, Jovanović D, Spasojević V, Kalagasidis-Krušić M, Kačarević-Popovi Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185

    Google Scholar 

  42. Siddiqui MN, Redhwi HH, Tsagkalias I, Softas C, Ioannidou MD, Achilias DS (2016) Synthesis and characterization of poly(2-hydroxyethylmethacrylate)/silver hydrogel nanocomposites prepared via in situ radical polymerization. Thermochim Acta 643:53–64

    CAS  Google Scholar 

  43. Nguyen NT, Liu JH (2014) A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem Eng 45:2827–2833

    CAS  Google Scholar 

  44. Eghbalifam N, Frounchi M, Dadbin S (2015) Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation. Int J Biol Macromol 80:170–176

    CAS  PubMed  Google Scholar 

  45. Bagheri Marandi G, Esfandiari K, Biranvand F, Babapour M, Sadeh S, Mahdavinia GR (2008) pH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly(acrylamide) superabsorbent hydrogels. J Appl Polym Sci 109:1083–1092

    Google Scholar 

  46. Azzam EMS, Solyman SM, Abd-Elaal AA (2016) Fabrication of chitosan/Ag-nanoparticles/clay nanocomposites for catalytic control on oxidative polymerization of aniline. Colloids Surf A Physicochem Eng 510:221–230

    CAS  Google Scholar 

  47. Su CH, Velusamy P, Kumar GV, Adhikary S, Pandian K, Anbu P (2017) Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition. J Mol Struct 1128:718–723

    CAS  Google Scholar 

  48. Apalangya V, Rangari V, Tiimob B, Jeelani S, Samuel T (2014) Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl Surf Sci 295:108–114

    CAS  Google Scholar 

  49. Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–369

    Google Scholar 

  50. Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C 53:212–221

    CAS  Google Scholar 

  51. Zhang Y, Gao P, Zhao L, Chen Y (2016) Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front Chem Sci Eng 10(1):147–161

    CAS  Google Scholar 

  52. Nithya A, JeevaKumari HL, Rokesh K, Ruckmani K, Jeganathan K, Katachalam KJ (2015) A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity. J Photochem Photobiol B 153:412–422

    CAS  PubMed  Google Scholar 

  53. Bajpai SK, Kumari M (2015) A green approach to prepare silver nanoparticles loaded gumacacia/poly(acrylate) hydrogels. Int J Biol Macromol 80:177–188

    CAS  PubMed  Google Scholar 

  54. Luo YL, Xu F, Chen YS, Jia CY (2010) Assembly, characterization of Ag nanoparticles in P(AAm-co-NVP)/CS semi-IPN, and swelling of the resulting composite hydrogels. Polym Bull 65:181–199

    CAS  Google Scholar 

  55. Wei QB, Feng FU, Zhang YQ, Tang L (2014) Preparation, characterization, and antibacterial properties of pH-responsive P (MMA-co-MAA)/silver nanocomposite hydrogels. J Polym Res 21:349

    Google Scholar 

  56. Constantin M, Bucatariu SM, Doroftei F, Fundueanu G (2017) Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs. Carbohydr Polym 157:493–500

    CAS  PubMed  Google Scholar 

  57. Tally M, Atassi Y (2016) Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly(acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym Bull 73:3183–3208

    CAS  Google Scholar 

  58. Sadeghi M (2011) Synthesis of starch-g-poly(acrylic acid-co-2-hydroxy ethyl methacrylate) as a potential pH-sensitive hydrogel-based drug delivery system. Turk J Chem 35:723–733

    CAS  Google Scholar 

  59. Mahdavinia GR, Pourjavadi A, Zohuriaan-Mehr MJ (2006) A convenient one-step preparation of chitosan-poly(sodium acrylate-co-acrylamide) hydrogel hybrids with super-swelling properties. J Appl Polym Sci 99:1615–1619

    CAS  Google Scholar 

  60. Shihui YU, Zhang X, Tian GTL, Liu D, Liu Y, Yang X, Pan W (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 155:208–217

    Google Scholar 

  61. Boppana R, Krishna GM, Nayak U, Mutalik S, Sa B, Kulkarni RV (2015) Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery. Int J Biol Macromol 75:133–143

    CAS  PubMed  Google Scholar 

  62. Mauri E, Cappella F, Masi M, Rossi F (2018) PEGylation influences drug delivery from nanogels. J Drug Deliv Sci Technol 46:87–92

    CAS  Google Scholar 

  63. Verma A, Riaz U (2018) Sonolytically intercalated poly(anisidine-co-toluidine)/bentonite nanocomposites: pH responsive drug release characteristics. J Drug Deliv Sci Technol 48:49–58

    CAS  Google Scholar 

  64. Mandal B, Ray SK (2013) Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water. Carbohydr Polym 98:257–269

    CAS  PubMed  Google Scholar 

  65. Vimala K, Murali Mohan Y, Samba Sivudu K, Varaprasad K, Ravindra S, Narayana Reddy N, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76:248–258

    CAS  Google Scholar 

  66. Ritger PI, Peppas NA (1987) A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release 57:37–42

    Google Scholar 

  67. Jindal N, Mehta SK (2015) Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B 129:100–106

    CAS  Google Scholar 

  68. Raho R, Paladini F, Lombardi FA, Boccarella S, Zunino B, Pollini M (2015) In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications. Mater Sci Eng C 55:42–49

    CAS  Google Scholar 

  69. Lin S, Chen L, Huang L, Cao S, Luo X, Liu K (2015) Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Ind Crops Prod 70:395–403

    CAS  Google Scholar 

  70. Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng C 59:109–119

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Azad University of Arak, Iran, for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezami, S., Sadeghi, M. pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems. Polym. Bull. 77, 1255–1279 (2020). https://doi.org/10.1007/s00289-019-02801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02801-3

Keywords

Navigation