Skip to main content

Advertisement

Log in

The Impact of the Number of Hospital Beds and Spatial Heterogeneity on an SIS Epidemic Model

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

To explore the impact of the number of hospital beds on the prevention and control of an infectious disease, a diffusive SIS epidemic model in a heterogeneous environment is proposed and investigated. A nonlinear recovery rate is introduced to describe the effects of the number of hospital beds on the transmission dynamics of the disease. The basic reproduction number, which depends on the number of hospital beds and spatial heterogeneity, is defined. It is shown that a sufficient number of hospital beds is very important for disease control and eradication. The numerical simulations are presented to confirm our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdelrazec, A., Belair, J., Shan, C.H., Zhu, H.P.: Modeling the spread and control of dengue with limited public health resources. Math. Biosci. 271, 136–145 (2016)

    Article  MathSciNet  Google Scholar 

  2. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst., Ser. A 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  3. Boaden, R., Proudlove, N., Wilson, M.: An exploratory study of bed management. J. Manag. Med. 13, 234–250 (1999)

    Article  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: Spatial Ecology Via Reaction-Diffusion Equations. Wiley, New York (2003)

    MATH  Google Scholar 

  5. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases. Wiley Series in Mathematical and Computational Biology. Wiley, West Sussex (2000)

    MATH  Google Scholar 

  6. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ge, J., Kim, K.I., Lin, Z.G., Zhu, H.P.: A SIS reaction-diffusion-advection model in a low-risk and high-risk domain. J. Differ. Equ. 259, 5486–5509 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics, vol. 247. Longman, Harlow (1991)

    MATH  Google Scholar 

  9. Huang, W., Han, M., Liu, K.: Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng. 7, 51–66 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kim, K.I., Lin, Z.G.: Asymptotic behavior of an SEI epidemic model with diffusion. Math. Comput. Model. 47, 1314–1322 (2008)

    Article  MathSciNet  Google Scholar 

  11. Li, Y., Li, W.T., Yang, Y.R.: Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model. J. Math. Phys. 57, 041504 (2016). 28 pp

    Article  MathSciNet  Google Scholar 

  12. Li, H.C., Peng, R., Wang, F.B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2017)

    Article  MathSciNet  Google Scholar 

  13. Lin, Z.G., Zhu, H.P.: Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409 (2017)

    Article  MathSciNet  Google Scholar 

  14. Pucci, P., Serrin, J.: The strong maximum principle revisited. J. Differ. Equ. 196, 1–66 (2004)

    Article  MathSciNet  Google Scholar 

  15. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  Google Scholar 

  16. Peng, R., Yi, F.Q.: Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Physica D 259, 8–25 (2013)

    Article  MathSciNet  Google Scholar 

  17. Peng, R., Zhao, X.Q.: A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shan, C.H., Zhu, H.P.: Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds. J. Differ. Equ. 257, 1662–1688 (2014)

    Article  MathSciNet  Google Scholar 

  19. Samsuzzoha, M., Singh, M., Lucy, D.: Numerical study of a diffusive epidemic model of influenza with variable transmission coefficient. Appl. Math. Model. 35, 5507–5523 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wang, W., Zhao, X.Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  Google Scholar 

  21. Wu, Y.X., Zou, X.F.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X., Liu, X.N.: Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal., Real World Appl. 10, 565–567 (2009)

    Article  MathSciNet  Google Scholar 

  23. World Health Organization: World Health Statistics 2005–2011. http://www.who.int/gho/publications/world_health_statistics/en/

  24. World Health Organization: Management of health facilities: Hospitals. http://www.who.int/management/facility/hospital/en/index6.html

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that helped improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigui Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is partially supported by the NNSF of China (Grant No. 11771381, 11701206), Graduate Research and Innovation Projects of Jiangsu Province and Yangzhou University International Academic Exchange Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ge, J. & Lin, Z. The Impact of the Number of Hospital Beds and Spatial Heterogeneity on an SIS Epidemic Model. Acta Appl Math 167, 59–73 (2020). https://doi.org/10.1007/s10440-019-00268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00268-y

Keywords

Mathematics Subject Classification

Navigation