Skip to main content
Log in

Synthesis and Properties of Zinc Oxide Nanoparticles: Advances and Prospects

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

The physical, chemical, and biological methods for the synthesis of zinc oxide nanoparticles are considered; their advantages and disadvantages are analyzed. The relationship between the method of synthesis and the properties of the systems obtained is shown. The unique optical and antibacterial properties of zinc oxide nanoparticles and the relevant areas of their practical applications are discussed. The dependence of the antibacterial properties of zinc oxide on the shape and size of its particles is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. Shul’gina, T.A., Norkin, I.A., and Puchin’yan, D.M., Fundam. Issled., 2012, no. 7–2.

  2. Rempel’, A.A., and Valeeva, A.A., Materialy i metody nanotekhnologii: uchebnoe posobie (Materials and Methods of Nanotechnology: A Textbook), Yekaterinburg: Ural. Gos. Univ., 2015.

  3. Guseva, A.F., Neiman, A.Ya., and Nokhrin, S.S., Metody polucheniya nanorazmernykh materialov (Methods for Producing Nanoscale Materials), Yekaterinburg: Ural. Gos. Univ., 2008.

  4. Wang, Y. and Xia, Y., Nano Lett., 2004, vol. 4, no. 10, p. 2047.

    Article  CAS  Google Scholar 

  5. Kolesnik, I.V. and Eliseev, A.A., Khimicheskie metody sinteza nanomaterialov: metodicheskoe posobie (Chemical Methods for the Synthesis of Nanomaterials: A Manual), Moscow: Mosk. Gos. Univ., 2011.

  6. Van der Rul, H., et al., J. Sol–Gel Sci. Technol., 2006, vol. 39, no. 1, p. 41.

    Article  CAS  Google Scholar 

  7. Zhou, Y., et al., Mater. Res. Bull., 2008, vol. 43, nos. 8–9, p. 2113.

    Article  CAS  Google Scholar 

  8. Applerot, G., et al., Adv. Funct. Mater., 2009, vol. 19, no. 6, p. 842.

  9. Brichkin, S.B., Spirin, M.G., and Nikolenko L.M., et al., High Energy Chem., 2008, vol. 42, no. 7, p. 516.

    Article  CAS  Google Scholar 

  10. Ristić, M., J. Alloys Compd., 2005, vol. 397, nos. 1–2, p. L1.

    Article  CAS  Google Scholar 

  11. Selvarajan, E. and Mohanasrinivasan, V., Mater. Lett., 2013, vol. 112, p. 180.

    Article  CAS  Google Scholar 

  12. Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., and Buszewski, B., Adv. Colloid Interface Sci., 2017, vol. 249, p. 37.

    Article  CAS  PubMed  Google Scholar 

  13. Myslitskaya, N.A., Ivanov, A.M., and Bryukhanov, V.V., Izv. Kaliningrad. Gos. Tech. Univ., 2015, vol. 36, no. 1, p. 195.

  14. Svetlichnyi, V.A. and Lapin, I.N., Russ. Phys. J., 2013, vol. 56, no. 5, p. 581.

    Article  CAS  Google Scholar 

  15. Ishikawa, Y., Shimizu, Y., Sasaki, T., and Koshizaki, N., J. Colloid Interface Sci., 2006, vol. 300, p. 612.

    Article  CAS  PubMed  Google Scholar 

  16. Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T., J. Phys. Chem. B, 2000, vol. 104, no. 39, p. 9111.

    Article  CAS  Google Scholar 

  17. Simakin, A.V., Voronov, V.V., and Shafeev, G.A., Tr. Inst. Obshch. Fiz. im. A.M. Prokhorova, Ross. Akad. Nauk, 2004, vol. 64, p. 83.

    Google Scholar 

  18. Yang, G.W., Prog. Mater. Sci., 2007, vol. 52, no. 4, p. 648.

    Article  CAS  Google Scholar 

  19. Kim, K.K., et al., Chem. Phys. Lett., 2011, vol. 511, nos. 1–3, p. 116.

    Article  CAS  Google Scholar 

  20. Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T., J. Phys. Chem. B, 2000, vol. 104, no. 35, p. 8333.

    Article  CAS  Google Scholar 

  21. Mintcheva, N., Aljulaih, A., Wunderlich, W., Kulinich, S., and Iwamori, S., Materials, 2018, vol. 11, no. 7, p. 1127.

    Article  CAS  PubMed Central  Google Scholar 

  22. Gurav, A., Kodas, T., Pluym, T., and Yun Xiong, Aerosol Sci. Technol., 1993, vol. 19, p. 411.

    Article  CAS  Google Scholar 

  23. Shinde, S.S., Bhosale, C.H., and Rajpure, K.Y., J. Mol. Struct., 2012, vol. 1021, p. 123.

    Article  CAS  Google Scholar 

  24. Vimalkumar, T.V., Poornima, N., Jinesh, K.B., Sudha Kartha, C., and Vijayakumar, K.P., Appl. Surf. Sci., 2011, vol. 257, p. 8334.

    Article  CAS  Google Scholar 

  25. Gabás, M., Barrett, N.T., Ramos-Barrado, J.R., Gota, S., Rojas, T.C., and López-Escalante, M.C., Sol. Energy Mater. Sol. Cells, 2009, vol. 93, p. 1356.

    Article  CAS  Google Scholar 

  26. Lashkova, N.A., Maksimov, A.I., Matyushkin, L.B., Moshnikov, V.A., Ryabko, A.A., Somov, P.A., and Tulenin, S.S., Butlerov. Soobshch., 2015, vol. 42, no. 6, p. 48.

    Google Scholar 

  27. Karpanin, O.V., Metal’nikov, A.M., Pivkin, A.Yu., and Solov’ev, V.A., Nadezhnost’ i kachestvo: Tr. Mezhdunar. simp. (Reliability and Quality: Proc. Int. Symp.), Penza: Penzensk. Gos. Univ., 2011, p. 165.

  28. Lashkova, N.A., Maximov, A.I., Ryabko, A.A., Bobkov, A.A., Moshnikov, V.A., and Terukov, E.I., Semiconductors, 2016, vol. 50, no. 9, p. 1254.

    Article  CAS  Google Scholar 

  29. Bagamadova, A.M., Mamedov, V.V., Asvarov, A.Sh., Omaev, A.K., and Makhmudov, S.Sh., Zh. Tekh. Fiz., 2012, no. 4, p. 156.

  30. Belosludtsev, A.P., Kuznetsov, D.V., Lysov, D.V., Yudin, A.G., and Kondakov, S.E., Vestn. Mosk. Gos. Univ., Ser. 2: Khim., 2012, vol. 53, no.5, p. 339.

    CAS  Google Scholar 

  31. Ivanovskii, G.F. and Petrov, V.I., Ionno-plazmennaya obrabotka materialov (Ion-Plasma Processing of Materials), Moscow: Radio Svyaz’, 1986.

  32. Ataev, B.M., Kamilov, I.K., Bogamadova, A.M., Magomedov, V.V., Omaev, A.K., and Rabadanov, M.Kh., Tech. Phys., 1999, vol. 44, no. 11, p. 1391.

    Article  CAS  Google Scholar 

  33. Zakirova, R.M., Krylov, P.N., Suvorov, I.A., and Fedotova, I.V., Vestn. Udmurt. Univ., 2012, no. 4, p. 14.

  34. Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys., 1985, vol. 24, p. L605.

    Article  Google Scholar 

  35. Jun-ichi Nomoto, Jun-ichi Oda, Toshihiro Miyata, and Tadatsugu Minami, Thin Solid Films, 2010, vol. 519, p. 1587.

    Article  CAS  Google Scholar 

  36. Vol’pyan, O.D., Obod, Yu.A., and Yakovlev, P.P., Prik. Fiz., 2010, no. 3, p. 24.

  37. Qu, J., Yuan, X., Wang, X., and Shao, P., Environ. Pollut., 2011, vol. 159, no. 7, p. 1783.

    Article  CAS  PubMed  Google Scholar 

  38. Zaitsev, S.V., Vashchilin, V.S., Kolesnik, V.V., Limarenko, M.V., Prokhorenkov, D.S., and Evtushenko, E.I., Vestn. Irkutsk. Gos. Tekh. Univ., 2017, vol. 21, no. 8, p.167.

  39. Khokhlov, E.A., Dokl. Belarus. Gos. Univ. Inform. Radioelectron., 2008, vol. 35, p. 71.

    Google Scholar 

  40. Chhabra, V., et al., Tenside, Surfactants, Deterg., 1997, vol. 34, no. 3, p. 156.

    CAS  Google Scholar 

  41. Kuzovkova, A.A., Cand. Sci. (Chem.) Dissertation, Moscow: Russ. Univ. Chem. Technol., 2013.

  42. Li, X., He, G., Xiao, G., Liu, H., and Wang, M., J. Colloid Interface Sci., 2009, vol. 333, p. 465.

    Article  CAS  PubMed  Google Scholar 

  43. Sarkar, D., Tikku, S., Thapar, V., Srinivasa, R.S., and Khilar, K.C., Colloids Surf., A, 2011, vol. 381, nos. 1–3, p. 123.

    Article  CAS  Google Scholar 

  44. Kumar, H. and Rani, R., Int. Lett. Chem., Phys. Astron., 2013, vol. 19, p. 26.

    Google Scholar 

  45. Rui Li and Yantao Wang, Adv. Mater. Res., 2012, no. 621, p. 143.

  46. Fendler, J.H., Chem. Rev., 1987, vol. 87, p. 877.

    Article  CAS  Google Scholar 

  47. Handbook of Sol–Gel Science and Technology: Processing, Characterization, and Applications, Sakka, S., Ed., Boston: Clawer Academic, 2005.

    Google Scholar 

  48. Jones, R.W., Met. Mater., 1988, vol. 4, no. 12, p. 748.

    CAS  Google Scholar 

  49. Bochkareva, S.S., Izv. VUZov, Prikl. Khim. Biotekhnol., 2016, vol. 6, no. 3, p. 81.

    Google Scholar 

  50. Shabanova, N.A., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Fundamentals of Sol–Gel Technology of Nanodispersed Silica), Moscow: Akademkniga, 2004.

  51. Gugliemy, M., J. Non-Cryst. Solids, 1988, vol. 100, p. 16.

    Article  Google Scholar 

  52. Spanhel, L. and Anderson, M.A., J. Am. Chem. Soc., 1991, vol. 113, p. 2826.

    Article  CAS  Google Scholar 

  53. Jurablu, S., Farahmandjou, M., and Firoozabadi, T.P., J. Sci., Islamic Repub. Iran, 2015, vol. 26, no. 3, p. 281.

    Google Scholar 

  54. Hayat, K., Gondal, M.A., Khaled, M.M., Ahmed, S., and Ahsan, M.S., Appl. Catal., A, 2011, vol. 393, p. 122.

  55. Meulenkamp, E.A., J. Phys. Chem. B, 1998, vol. 102, no. 29, p. 5566.

    Article  CAS  Google Scholar 

  56. Vokhmintsev, K.V. and Trusova, E.A., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 7, p. 112.

    Google Scholar 

  57. Sharma, A., Singh, B.P., Dhar, S., Gondorf, A., and Spasova, M., Surf. Sci., 2012, vol. 606, p. L13.

    Article  CAS  Google Scholar 

  58. Caglar, M. and Yakuphanoglu, F., Appl. Surf. Sci., 2012, vol. 258, p. 7760.

    Article  CAS  Google Scholar 

  59. Tari, O., Aronne, A., Addonizio, M.L., Daliento, S., Fanelli, E., and Pernice, P., Sol. Energy Mater. Sol. Cells, 2012, vol. 105, p. 179.

    Article  CAS  Google Scholar 

  60. Vishwas, M., Narasimha K. Rao, Arjuna Gowda, K.V., and Chakradhard, R.P.S., Spectrochim. Acta, Part A, 2010, vol. 77, p. 330.

    Article  CAS  Google Scholar 

  61. Huang, N., Zhu, M.W., Gao, L.J., Gong, J., Sun, C., and Jiang, X., Appl. Surf. Sci., 2011, vol. 257, p. 6026.

    Article  CAS  Google Scholar 

  62. Shi, L., Tao, K., Yang, R., Meng, F., Xing, C., and Tsubaki, N., Appl. Catal., A, 2011, vol. 401, p. 46.

  63. Caglar, M., Caglar, Y., Aksoy, S., and Ilican, S., Appl. Surf. Sci., 2010, vol. 256, p. 4966.

    Article  CAS  Google Scholar 

  64. Zhu, Z., Yang, D., and Liu, H., Adv. Powder Technol., 2011, vol. 22, p. 493.

    Article  Google Scholar 

  65. Kolesnik, I.V. and Eliseev, A.A., Khimicheskie metody sinteza nanomaterialov: metodicheskoe posobie (Chemical Methods for the Synthesis of Nanomaterials: A Manual), Moscow: Mosk. Gos. Univ., 2011.

  66. Vayssieres, L., Keis, K., Lindquist, S.E., and Hagfeldt, A., J. Phys. Chem. B, 2001, vol. 105, p. 3350.

    Article  CAS  Google Scholar 

  67. Vayssieres, L., Adv. Mater., 2003, vol. 15, no. 5, p. 464.

    Article  CAS  Google Scholar 

  68. Baruah, S. and Dutta, J., Sci. Technol. Adv. Mater., 2009, vol. 10, no. 1, 013001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, S., Li, R., Lv, C., Xu, W., and Gou, X., J. Hazard. Mater., 2011, vol. 192, p. 730.

    Article  CAS  PubMed  Google Scholar 

  70. Podrezova, L.V., Cand. Sci. (Chem.) Dissertation, Almaty: Satbayev Univ., 2013.

  71. Somov, P.A. and Maksimov, A.I., Molodoi Uchenyi, 2014, no. 8, p. 255.

  72. Govender, K., Boyle, D.S., and Kenway, P.B., J. Mater. Chem., 2004, vol. 14, p. 2575.

    Article  CAS  Google Scholar 

  73. Musić, S., Popović, S., Maljković, M., and Dragčević, Đ., J. Alloys Compd., 2002, vol. 347, nos. 1–2, p. 324.

    Article  Google Scholar 

  74. Rodríguez-Paéz, J.E., Caballero, A.C., Villegas, M., Moure, C., Durán, P., and Fernández, J.F., J. Eur. Ceram. Soc., 2001, vol. 21, no. 7, p. 925.

    Article  Google Scholar 

  75. Nikolaeva, N.S., Ivanov, V.V., and Shubin,A.A., Zh. Sib. Fed. Univ., 2010, vol. 2, p. 153.

    Google Scholar 

  76. Dzhenloda, R.Kh. and Koroleva, M.Yu., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 7, p. 81.

    Google Scholar 

  77. Dzhenloda, R.Kh., Volostykh, M.V., and Geidt, P.V., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 7, p. 84.

    Google Scholar 

  78. Qu, J., Yuan, X., Wang, X., and Shao, P., Environ. Pollut., 2011, vol. 159, no. 7, p. 1783.

    Article  CAS  PubMed  Google Scholar 

  79. Selvarajan, E. and Mohanasrinivasan, V., Mater. Lett., 2013, vol. 112, p. 180.

    Article  CAS  Google Scholar 

  80. Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., and Kalinina, N.O., Acta Naturae, 2014, vol. 6, no. 1, p. 35.

    Article  CAS  Google Scholar 

  81. Mirzaei, H. and Darroudi, M., Ceram. Int., 2017, vol. 43, no. 1, p. 907.

    Article  CAS  Google Scholar 

  82. Larin, S.L., Budko, E.V., Khabarov, A.A., Lipatov, V.A., and Zvyagintseva, A.R., Chelovek Ego Zdorov’e, 2016, no. 3, p. 100.

  83. Babushkina, I.V., Chebotareva, E.G., Elbudu, M., Orlov, S.B., Borodulina, E.V., and Borodulin, V.B., Vestn. Ross. Univ. Druzhby Narodov, 2012, no. 3, p. 22.

  84. Jayaseelan, C., Abdul Rahuman, A., Vishnu Kirthi, A., Marimuthu, S.T., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., and Bhaskara Rao, K.V., Spectrochim. Acta, Part A, 2012, vol. 90, p. 78.

    Article  CAS  Google Scholar 

  85. Sivakumar, P.M., Balaji, S., Prabhawathi, V., Neelakandan, R., Manoharan, P.T., and Doble, M., Carbohydr. Polym., 2010, vol. 79, p. 717.

    Article  CAS  Google Scholar 

  86. Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., and Buszewski, B., Adv. Colloid Interface Sci., 2017, vol. 249, p. 37.

    Article  CAS  PubMed  Google Scholar 

  87. Adams, L.K., Lyon, D.Y., and Alvarez, P.J.J., Water Res., 2006, vol. 40, no. 19, p. 3527.

    Article  CAS  PubMed  Google Scholar 

  88. Kasemets, K., Ivask, A., Dubourguier, H.-C., and Kahru, A., Toxicol. in Vitro, 2009, vol. 23, no. 6, p. 1116.

    Article  CAS  PubMed  Google Scholar 

  89. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F., and Fiévet, F., Nano Lett., 2006, vol. 6, no. 4, p. 866.

    Article  CAS  PubMed  Google Scholar 

  90. Jones, N., Ray, B., Ranjit, K.T., and Manna, A.C., FEMS Microbiol. Lett., 2008, vol. 279, no. 1, p. 71.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, L., et al., Prog. Nat. Sci., 2008, vol. 18, no. 8, p. 939.

    Article  CAS  Google Scholar 

  92. Heinlaan, M., et al., Chemosphere, 2008, vol. 71, no. 7, p. 1308.

    Article  CAS  PubMed  Google Scholar 

  93. Huang, Z., et al., Langmuir, 2008, vol. 24, p. 4140.

    Article  CAS  PubMed  Google Scholar 

  94. Buzea, C., Pacheco, I.I., and Robbie, K., Biointerphases, 2007, vol. 2, no. 4, p. MR17.

    Article  PubMed  Google Scholar 

  95. Gordon, T., et al., Colloids Surf., A, 2011, vol. 374, nos. 1–3, p. 1.

    Article  CAS  Google Scholar 

  96. Reddy, K.M., et al., Appl. Phys. Lett., 2007, vol. 90, no. 21, 213902.

    Article  CAS  PubMed Central  Google Scholar 

  97. Xie, Y., et al., Appl. Environ. Microbiol., 2011, vol. 77, no. 7, p. 2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jeyasubramanian, K., Hikku, G.S., and Sharma, R.K., J. Water Process. Eng., 2015, vol. 8, p. 35.

    Article  Google Scholar 

  99. Liu, Y., et al., J. Appl. Microbiol., 2009, vol. 107, no. 4, p. 1193.

    Article  CAS  PubMed  Google Scholar 

  100. Mazitova, G.T., Khlopetski, O.G., Nepomnyashchaya, K.V., Kienskaya, K.I., and Butorova, I.A., Butlerov. Soobshch., 2017, vol. 52, no. 12, p. 119.

    Google Scholar 

  101. He, L., et al., Microbiol. Res., 2011, vol. 166, no. 3, p. 207.

    Article  CAS  PubMed  Google Scholar 

  102. Kairyte, K., Kadys, A., and Luksiene, Z., J. Photochem. Photobiol., B, 2013, vol. 128, p. 78.

    Article  CAS  Google Scholar 

  103. Sonia, S., et al., Mater. Sci. Eng. C, 2017, vol. 79, p. 581.

    Article  CAS  Google Scholar 

  104. Fridman, R.A., Tekhnologiya kosmetiki (Cosmetics Technology), Moscow: Pishchevaya Promyshlennost’, 1984.

  105. Staemmler, V., et al., Phys. Rev. Lett., 2003, vol. 90, no. 10, 106102.

    Article  CAS  PubMed  Google Scholar 

  106. Sivakumar, P.M., Balaji, S., Prabhawathi, V., Neelakandan, R., Manoharan, P.T., and Doble, M., Carbohydr.  Polym., 2010, vol. 79, p. 717.

    Article  CAS  Google Scholar 

  107. Torshin, I.Yu., Gromova, O.A., Grishina, T.R., and Rudakov, K.V., Trudnyi Patsient, 2010, no. 3, p. 38.

  108. Brooking, J., Davis, S.S., and Illum, L., J. Drug Targeting, 2001, vol. 9, no. 4, p. 267.

    Article  CAS  Google Scholar 

  109. Hsiao, I.L. and Huang, Y.J., Sci. Total Environ., 2011, vol. 409, no. 7, p. 1219.

    Article  CAS  PubMed  Google Scholar 

  110. Hackenberg, S., et al., Toxicol. in Vitro, 2011, vol. 25, no. 3, p. 657.

    Article  CAS  PubMed  Google Scholar 

  111. Ickrath, P., et al., Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 12, p. 1590.

    Article  CAS  PubMed Central  Google Scholar 

  112. Cross, S.E., et al., Skin Pharmacol. Physiol., 2007, vol. 20, no. 3, p. 148.

    Article  CAS  PubMed  Google Scholar 

  113. Liu, M., Kitai, A.H., and Mascher, P., J. Lumin., 1992, no. 54, p. 35.

  114. Bylander, E.G., J. Appl. Phys., 1978, no. 49, p. 1188.

  115. Meyer, B.K., Alves, H., Hofmann, D.M., et al., Phys. Status Solidi B, 2004, vol. 241, p. 231.

    Article  CAS  Google Scholar 

  116. Leiter, F.H., Alves, H.R., Hofstaetter, A., et al., Phys. Status Solidi B, 2001, vol. 226, no. 1, p. R4.

    Article  CAS  Google Scholar 

  117. Leiter, F.H., Alves, H.R., Romanov, N.G., et al., Phys. B (Amsterdam, Neth.), 2003, vol. 201, p. 340.

    Google Scholar 

  118. Özgür, Ü., Alivov, Ya.I., Liu, C., et al., J. Appl. Phys., 2005, vol. 98, 041301.

    Article  CAS  Google Scholar 

  119. Kohan, A.F., Ceder, G., Morgan, D., et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, 15019.

    Article  CAS  Google Scholar 

  120. Vlasenko, L.S. and Watkins, G.D., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, 035203.

    Article  CAS  Google Scholar 

  121. Chen, H., Gu, S., Tang, K., et al., J. Lumin., 2011, vol. 131, p. 1189.

    Article  CAS  Google Scholar 

  122. Leiter, F.H., Alves, H.R., Hofstaetter, A., et al., Phys. Status Solidi B, 2001, vol. 226, no. 1, p. R4.

    Article  CAS  Google Scholar 

  123. Leiter, F.H., Alves, H.R., Romanov, N.G., et al., Phys. B (Amsterdam, Neth.), 2003, vol. 201, p. 340.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Mendeleev University of Chemical Technology (project no. 003-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. T. Mazitova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazitova, G.T., Kienskaya, K.I., Ivanova, D.A. et al. Synthesis and Properties of Zinc Oxide Nanoparticles: Advances and Prospects. Ref. J. Chem. 9, 127–152 (2019). https://doi.org/10.1134/S207997801902002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207997801902002X

Keywords:

Navigation