Skip to main content

Advertisement

Log in

Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.)

Indol-3-Essigsäure sichert Pflanzenwachstum und Ertrag salzgestresster Tomaten (Lycopersicon esculentum L.)

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Soil is a medium for plant growth and provides support, minerals and water to the plant for survival. Soil salinity declines availability of water to the plant, affect microorganisms growth, and water drainage capacity of soil, which adversely affect plant growth and development. In the present work the effect of indole-3-acetic acid (IAA) on growth and yield of salinity stressed tomato (Lycopersicon esculentum L.) was studied. Salinity levels (0 [control, no NaCl], 30 and 60 mM of NaCl) were applied to the soil and IAA concentrations (0 [control, no IAA], 100 and 200 ppm) were sprayed on the plants after ten days of salinity treatment. The statistical analysis showed that salt stress conditions adversely affected plant height, branches per plant, stem diameter, fruits per plant, fruit diameter, fruit length, total chlorophyll content, root length, root fresh weight, roots dry weight, and yield per plant, while IAA application to salinity stressed tomato plants rescued the plants and had significantly positive effects on growth and yield of tomato plants. In the light of above results, it is concluded that foliar application of IAA may rescue the salinity stressed tomato plants.

Zusammenfassung

Der Boden ist ein Medium für das Pflanzenwachstum und bietet der Pflanze Unterstützung, Mineralien und Wasser zum Überleben. Der Salzgehalt des Bodens verringert die Verfügbarkeit von Wasser für die Pflanze, beeinträchtigt das Wachstum von Mikroorganismen und die Wasserableitungskapazität des Bodens, was sich negativ auf das Pflanzenwachstum und die Pflanzenentwicklung auswirkt. In der vorliegenden Arbeit wurde die Wirkung von Indol-3-Essigsäure (IES) auf Wachstum und Ertrag von salzgestressten Tomaten (Lycopersicon esculentum L.) untersucht. Der Boden wurde mit verschiedenen Salzgehalten versetzt (0, 30 und 60 mM NaCl) und nach zehn Tagen wurde die Pflanze mit drei unterschiedlichen IES-Konzentrationen (0, 100 und 200 ppm) besprüht. Die statistische Analyse zeigte, dass Salzstress die Pflanzenhöhe, die Äste pro Pflanze, den Stieldurchmesser, die Früchte pro Pflanze, den Fruchtdurchmesser, die Fruchtlänge, den Gesamtchlorophyllgehalt, die Wurzellänge, das Wurzelfrischgewicht, das Wurzeltrockengewicht und die Ertrag pro Pflanze nachteilig beeinflusste. Die IES-Anwendung schützte die Pflanzen und wirkte sich signifikant positiv auf das Wachstum und den Ertrag der Tomatenpflanzen aus. In Anbetracht der obigen Ergebnisse wird der Schluss gezogen, dass die Anwendung von IES auf den Blättern die salzgestressten Tomatenpflanzen schützen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38(2):287–290

    Article  CAS  Google Scholar 

  • Akbar M, Yabuno T, Nakao S (1972) Breeding for saline resistant varieties of rice.I. variability for salt tolerance among some rice varieties. Japan J Breed 22:277–284

    Article  Google Scholar 

  • Akhtar J, Saqib ZA, Sarfraz M, Saleem I, Haq MA (2010) Evaluating salt tolerant cotton genotypes at different levels of nacl stress in solution and soil culture. Pak J Bot 42(4):2857–2866

    Google Scholar 

  • Akter P, Rahman MA (2010) Effect of foliar application of IAA and GA3 on sex expression, yield attributes and yield of bitter Gourd. Chittagong Univ J B Sci 5(2):55–62

    Google Scholar 

  • Alam SM, Naqvi SSM, Azmi AR (2002) Effect of salt stress on growth of tomato. Pak J Sci Ind Res 32(2):110–113

    Google Scholar 

  • Alam SM, Shereen A, Khan M (2000) Growth response of wheat cultivars to naphthalene acetic acid (NAA) and Ethrel. Pak J Bot 34(2):135–137

    Google Scholar 

  • Albayrak S, Camas N (2005) Effects of different levels and application times of Humic acid on root and leaf yield and yield components of forage turnip (brassica rapa L.). J Agron 4(2):130–133

    Article  Google Scholar 

  • Ammanullah MM, Sekar S, Vicent S (2010) Plant growth substances in crop production. Asian J Plant Sci 9:215–222

    Article  Google Scholar 

  • Anewal VV, Narayanaswamy P, Ekabote SD (2015) Effects of plant growth regulators on fruit set and ,yield of pomegranate Cv. and yield of rice. Soil Biol Biochem 33:405–408

    Google Scholar 

  • Anonymous (2014) Bumper yield: Government mulls exporting tomatoes. The Express Tribune. Dec. 17, 2014.

  • Ashraf M, Foolad MR (2007) Roles of Glycine betaine and Proline in improving plant abiotic stress tolerance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly T (1990) Improvement of salt tolerance in Maize by selection and breeding. Plant Breed 104:101–107

    Article  Google Scholar 

  • Ashraf M, O’leary JM (1997) Ion distribution in leaves of salt–tolerant and salt–sensitive lines of spring wheat under salt stress. Acta Bot Neerl 46(2):207–217

    Article  CAS  Google Scholar 

  • Barnardo MA, Dieguez ET, Jone HG, Chairez FA, Ojanguren CLT, Cortes AL (2000) Sucreening and classification of cowpea genotypes for salt tolerance during germination. Int J Exp Bot 67:71–84

    Google Scholar 

  • Bastianpillai VA, Stark C, Franke G (1982) The influence of gibberellin (GA3), auxin (1-NAA) and cytokinin (Kinetin, 6‑FAP) on the salt tolerance of wheat under greenhouse conditions. Beitr Trop Landwirtsch Veterinarmed 20:365–370

    CAS  Google Scholar 

  • Bose TK, Jana BK, Mukhopadhyay TP (1980) Effects of growth regulators on growth and flowering in Hippeastrum hybridium. Hort. Sci Hortic 12:195–200

    Article  CAS  Google Scholar 

  • Britannica et al (1990) The “New encyclopedia britannica”, 15th edn. Encyclopedia Inc, Chicago, pp 135–137

    Google Scholar 

  • Deotale RD, Maske VG, Sorte NV, Chimurkar BS, Yerne AZ (1998) Effect of GA and NAA on morphological parameter of soybean. J Soil Crops 8(1):91–94

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Emongor VE (1997) The prospective of plant growth regulators in Kenyan agriculture. In: Afri Crop Sci Conf Procs, pp 227–229

    Google Scholar 

  • Food and Agricultural Organization (FAO) (2008) Land and plant nutrition management service. Available online at: http://www.fao.org/ag/agl/agll/spush/. Accessed 25 April 2019

    Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org Cult 76:101–119

    Article  CAS  Google Scholar 

  • Gedam VM, Patil RB, Suryawanshi YB, Mate SN (1998) Effect of plant growth regulators and boron on flowering, fruiting and seed yield in bitter gourd. Seed Res 26:97–100

    Google Scholar 

  • Gopal R, Dube BK (2003) Influence of variable potassium on barley metabolism. Ann Agri Res 24:73–77

    Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativumL.) plants grown under salt stress. J Environ Biol 37(3):421–429

    CAS  Google Scholar 

  • Hussain AG, Jahan N (2003) Effects of indol acetic acid on yield attributes and yield of two varieties of rice (Oryza sativa L.). Bangladesh J Bot 40(1):97–100

    Google Scholar 

  • Hussein MM, Mehanna H, Abou-Baker NH (2012) Growth, photosynthetic pigments and mineral status of Cotton plants as affected by salicylic acid and salt stress. J Appl Sci Res 8(11):5476–5484

    CAS  Google Scholar 

  • Jacobs M, John SA, Rout S, Patra SS (1952) Effect of GA3 and NAA on growth and quality of garden pea (Pisum sativum L.) cv. Arkel. Int Q J Life Sci 10(3):381–383

    Google Scholar 

  • Kappel F, MacDonald R (2007) Early gibberellic acid spray increase firmness and fruit size of ‘Sweetheart’ sweet cherry. J Am Pomol Soc 61(1):38–43

    Google Scholar 

  • Kashem MA, Sultana N, Ikeda T, Hori H, Loboda T, Mitsui T (2000) Alternation of starch-sucrose transition in germinating wheat seed under sodium chloride salinity. J Plant Biol 43:121–127

    Article  CAS  Google Scholar 

  • Kaya C, Okant TA (2013) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34:529–538

    Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2009) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric 34(4):529–538

    Google Scholar 

  • Kaya C, Tuna AL, Okant MA (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric 34:529–538

    Google Scholar 

  • Khan MJ, Rashid HA, Rashid AR (1999) Intravarietal variability in wheat grown under saline conditions. Pak J Biol Sci 2:693–699

    Article  Google Scholar 

  • Lefevre I, Gratia E, Luttus S (2001) Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci 161:943–952

    Article  CAS  Google Scholar 

  • Li YL, Marcelis LFM, Stanghellini C (2004) Plant water relations as affected by osmotic potential of the nutrient solution and potential transpiration in tomato (Lycopersicon esculentum L.). J Hort Sci Biotech 79:211–218

    Article  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–25

    Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, Pascale SD (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Mizrahi Y, Taleisnik E, Kagan-Zur V, Zohas Y, Offenbach R, Matan E, Golan R (1988) A saline irrigation regime for improving tomato fruit quality without reducing yield. J Am Soc Hortic Sci 11(3):202–205

    Google Scholar 

  • Naguib NY, Khalil MY, El-Sherbeny SE (2003) The influence of indole acetic acid, phenylalanine and methionine on the growth. J Soils Crop 12:108–110

    Google Scholar 

  • Naseer S, Ejaz R, Muhammad A (2001) Effect of foliar application of Indole-3-acetic acid on growth and yield attributes of spring wheat (Triticuma estivum L.) under salt stress. Int J Agric Biol 3:1–7

    Google Scholar 

  • Oztekin GB, Tuzel Y (2011) Comparative salinity responses among tomato genotypes and rootstocks. Pak J Bot 43(6):2665–2672

    CAS  Google Scholar 

  • Parekh M (1968) The Indol acetic acid effect on the tomato (Lycopersicum esculentum Mill.) germination, growth and photosynthetic pigment. J Stress Physiol Biochem 6(3):4–16

    Google Scholar 

  • Parvin K, Ahamed KU, Islam MM, Haque MN, Hore PK, Siddik MA, Roy I (2015) Reproductive behavior of tomato plant under saline condition with exogenous application of calcium. Mid-east J Sci Res 23(12):2920–2926

    CAS  Google Scholar 

  • Patil PK, Ballal AL (1980) Effect of seed treatment and foliar spray of various growth regulators on flower drop and yield of green chilli (Cap&urn annuum L.) variety NP-46‑A. J Maharashtra Agric Univ 5:195–197

    Google Scholar 

  • Patil UB, Sangale PB, Desai BB (1985) Chemical regulation of yield and composition of chilli (Capsicum annuum L.) fruits. Cum Res Rep 1:39–41

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  Google Scholar 

  • Qureshi KM, Chughtai S, Qureshi US, Abbasi SA (2013) Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pak J Bot 45(4):1179–1185

    CAS  Google Scholar 

  • Rafeekher M, Nair SA, Sorte PN, Hatwal GP, Chandhan PM (2002) Effect of growth regulators on growth and yield of summer cucumber. J Soils Crop 12:108–110

    Google Scholar 

  • Raghav CS, Pal B (1994) Effect of saline water on growth, yield and yield contributory characters of various wheat (Triticum aestivum L.) cultivars. Ann Agric Res 15:351–356

    Google Scholar 

  • Saberi A, Aishah RS, Halim RA, Zaharah AR (2011) Morphological responses of forage sorghums to salinity and irrigation frequency. Afr J Biotechnol 47:9647–9656

    Article  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid R, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust J Crop Sci 5(5):500–510

    CAS  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Article  CAS  Google Scholar 

  • Sharma NK, Arora SK, Dhankhar BS (1988) Effect of plant growth substances on growth, flowering, sex expression and fruit yield in bottle gourd (Lagenari asiceraria (Molina) Standl.). Haryana Agric Univ J Res 18:291–297

    Google Scholar 

  • Singh G, Saxena OP (1991) Seed treatments with bioregulants in relation to wheat productivity. In: Proc. National Symp.on growth and differentiation in plants, India, pp 201–210

    Google Scholar 

  • Staff USSl (1954) Diagnosis and Improvement of Saline and Alkali Soils. USDA, US Government Printing Office, Washington DC

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a Biometrical approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Szepesi A, Csiszar J, Bajkan S, Gemes K, Horvath F, Erdei L, Deer AK, Simon ML, Tari IL (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szeged 49:123–125

    Google Scholar 

  • Uddain J, Hossain KMA, Mostafa MG, Rahman MJ (2009) Effect of different plant growth regulators on growth and yield of tomato. Int J Sustain Agric 1(3):58–63

    Google Scholar 

  • Ueda A, Kanechi M, Uno Y, Inagaki N (2003) Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J Plant Res 116:65–70

    Article  CAS  Google Scholar 

  • Waheed A, Hamid FS, Ahmad H, Abbassi FM, Aslam S, Shah AH, Ahmad N, Naheed N, Ali H, Khan N (2014) Effect of Indole Butyric acid (IBA) on early root formation (tomato “Sahil” hybrid) cuttings. J Mat Env Sci 6(1):272–279

    Google Scholar 

  • Zahir ZA, Asghar HN, Arshad M (2001) Cytokinin and its precursors for improving growth. J Bot 35(2):195–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imtiaz.

Ethics declarations

Conflict of interest

M. Alam, M.A. Khan, M. Imtiaz, M.A. Khan, M. Naeem, S.A. Shah, Samiullah, S.H. Ahmad and L. Khan declare that they have no competing interests.

Caption Electronic Supplementary Material

10343_2019_489_MOESM1_ESM.docx

The supplementary data tables show main factors (NaCl concentration and IAA concentrations) effect on corresponding studied parameters as well as the interaction effect of combination treatments. The following tables also show the results of absolute control (0 mM NaCl * 0 ppm IAA) on different studied parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M., Khan, M.A., Imtiaz, M. et al. Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.). Gesunde Pflanzen 72, 87–95 (2020). https://doi.org/10.1007/s10343-019-00489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00489-z

Keywords

Schlüsselwörter

Navigation