Skip to main content

Advertisement

Log in

Effect of Encapsulation Process on Technological Functionality and Stability of Spirulina Platensis Extract

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The limited stability of Spirulina protein extract towards environmental factors limits its application in food formulations. This study evaluates the characteristics and efficacy of different delivery systems composed of pure trehalose and trehalose-maltodextrin mixtures at different ratios (50:50; 20:80) to encapsulate Spirulina extract. The delivery systems were obtained through conventional amorphization techniques as freeze- and spray-drying and novel ones such as co-milling. Among the studied techniques, freeze-dried samples, regardless of the matrix composition, exhibited the highest carrying capacity with a residual amount of phycocyanin >89% after encapsulation. The use of ball co-milling for encapsulation caused a complete degradation of the core compound when applied using processing times applied of 6 h and 12 h. The glass transition temperature of the different samples, determined by differential scanning calorimetry, was affected by the carrier composition, increasing with increasing amounts of maltodextrin present in the matrix. When samples were exposed to high temperature during storage the delivery systems containing maltodextrin were more effective in preventing thermal degradation of the Spirulina extract and preserving its colouring ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Azevedo, A.I. Bourbon, A.A. Vicente, M.A. Cerqueira, Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int. J. Biol. Macromol. 71, 141–146 (2014)

    PubMed  CAS  Google Scholar 

  2. S. Ersus, U. Yurdagel, Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J. Food Eng. 80(3), 805–812 (2007)

    CAS  Google Scholar 

  3. L.S. Jackson, K. Lee, Microencapsulation and the food industry. Lebensm. Wiss. Technol. 24(4), 289–297 (1991)

    CAS  Google Scholar 

  4. M. Kfoury, L. Auezova, H. Greige-Gerges, S. Fourmentin, Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett. 17(1), 129–143 (2019)

    CAS  Google Scholar 

  5. C.C. Koga, A.R. Becraft, Y. Lee, S.Y. Lee, Taste detection thresholds of resveratrol. J. Food Sci. 80(9), S2064–S2070 (2015)

    PubMed  Google Scholar 

  6. Y.H. Roos, Glass transition temperature and its relevance in food processing. Annu. Rev. Food Sci. Technol. 1(1), 469–496 (2010). https://doi.org/10.1146/annurev.food.102308.124139

    Article  PubMed  CAS  Google Scholar 

  7. F. Shahidi, X.Q. Han, Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition 33(6), 501–547 (1993)

    CAS  Google Scholar 

  8. L. Cordone, G. Cottone, A. Cupane, A. Emanuele, S. Giuffrida, M. Levantino, Proteins in saccharides matrices and the Trehalose peculiarity: Biochemical and biophysical properties. Curr. Org. Chem. 19(17), 1684–1706 (2015)

    CAS  Google Scholar 

  9. J.M. Lakkis, Encapsulation and controlled release technologies in food systems (John Wiley & Sons, 2008)

  10. M.G. Corradini, in Encyclopedia of Food Chemistry, ed. by L. Melton, F. Shaidi, P. Varelis. Synthetic food colors, vol 1 (Elsevier, New York, 2019), pp. 291–296

    Google Scholar 

  11. D. McCann, A. Barrett, A. Cooper, D. Crumpler, L. Dalen, K. Grimshaw, E. Kitchin, K. Lok, L. Porteous, E. Prince, E. Sonuga-Barke, J.O. Warner, J. Stevenson, Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 370(9598), 1560–1567 (2007)

    PubMed  CAS  Google Scholar 

  12. F. Gandía-Herrero, M. Jiménez-Atiénzar, J. Cabanes, F. García-Carmona, J. Escribano, Stabilization of the bioactive pigment of Opuntia fruits through maltodextrin encapsulation. J. Agric. Food Chem. 58(19), 10646–10652 (2010)

    PubMed  Google Scholar 

  13. P. Robert, R. Carlsson, N. Romero, L. Masson, Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin. J. Am. Oil Chem. Soc. 80(11), 1115–1120 (2003)

    CAS  Google Scholar 

  14. K. Selim, K. Khalil, M. Abdel-Bary, N. Abdel-Azeim, in Alexandria Journal for Food Science and Technology. Special Volume Conference. Extraction, encapsulation and utilization of red pigments from roselle (Hibiscus sabdariffa L.) as natural food colourants (2008), pp. 7–20

    Google Scholar 

  15. G. Martelli, C. Folli, L. Visai, M. Daglia, D. Ferrari, Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochem. 49(1), 154–159 (2014). https://doi.org/10.1016/j.procbio.2013.10.008

    Article  CAS  Google Scholar 

  16. M. Faieta, Technological functionality and stability of colouring foodstuff in confectionery products. 20th workshop on the developments in the Italian PhD research on food science Technology and biotechnology (University of Teramo, 2015)

  17. K. Fukui, T. Saito, Y. Noguchi, Y. Kodera, A. Matsushima, H. Nishimura, et al., Relationship between color development and protein conformation in the phycocyanin molecule. Dyes Pigments 63(1), 89–94 (2004)

    CAS  Google Scholar 

  18. P. Pittia, Physcal State of Sugar Matrices and Aroma-Sugars Interactions at Nano-Scale (University of Trieste, Trieste, 2016)

    Google Scholar 

  19. C. Hedlin, Sorption isotherms of five types of grain straw at 70° F. Can. Agric. Eng. 9(1), 37–39 (1967)

    Google Scholar 

  20. M. Lawrence, A. Heath, P. Walker, Determining moisture levels in straw bale construction. Constr. Build. Mater. 23(8), 2763–2768 (2009)

    Google Scholar 

  21. G. Accorsi, G. Verri, M. Bolognesi, et al., The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 23, 3392–3394 (2009). https://doi.org/10.1039/b902563d

  22. A. Patel, S. Mishra, R. Pawar, P. Ghosh, Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr. Purif. 40(2), 248–255 (2005)

    PubMed  CAS  Google Scholar 

  23. N. Silalai, Y.H. Roos, Mechanical relaxation times as indicators of stickiness in skim milk–maltodextrin solids systems. J. Food Eng. 106(4), 306–317 (2011)

    CAS  Google Scholar 

  24. X.C. Tang, M.J. Pikal, Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 21(2), 191–200 (2004)

    PubMed  CAS  Google Scholar 

  25. P.L. Privalov, Cold denaturation of protein. Crit. Rev. Biochem. Mol. Biol. 25(4), 281–306 (1990)

    PubMed  CAS  Google Scholar 

  26. T. Arakawa, S.J. Prestrelski, W.C. Kenney, J.F. Carpenter, Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 46(1), 307–326 (2001)

    PubMed  CAS  Google Scholar 

  27. A. Hedoux, L. Paccou, S. Achir, Y. Guinet, Mechanism of protein stabilization by trehalose during freeze-drying analyzed by in situ micro-raman spectroscopy. J. Pharm. Sci. 102(8), 2484–2494 (2013)

    PubMed  CAS  Google Scholar 

  28. R. Sarada, M.G. Pillai, G. Ravishankar, Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem. 34(8), 795–801 (1999)

    CAS  Google Scholar 

  29. F. Gibbs, S. K., Inteaz Alli, Catherine N. Mulligan, Bernard (1999). Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr., 50(3), 213–224

  30. M.T.M. Gomes, D.T. Santos, M.A.A. Meireles, Micronization and encapsulation: Application of supercritical fluids in water removal. Conventional and Advanced Food Processing Technologies 249-266 (2015). https://doi.org/10.1002/9781118406281.ch11

    Google Scholar 

  31. F. Sussich, A. Cesàro, Trehalose amorphization and recrystallization. Carbohydr. Res. 343(15), 2667–2674 (2008)

    PubMed  CAS  Google Scholar 

  32. J. Willart, A. De Gusseme, S. Hemon, G. Odou, F. Danede, M. Descamps, Direct crystal to glass transformation of trehalose induced by ball milling. Solid State Commun. 119(8), 501–505 (2001)

    CAS  Google Scholar 

  33. M.P. Te Booy, R.A. De Ruiter, A.L. De Meere, Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry. Pharm. Res. 9(1), 109–114 (1992)

    Google Scholar 

  34. Y. Roos, M. Karel, Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56(1), 38–43 (1991b)

    CAS  Google Scholar 

  35. S.A. Desobry, F.M. Netto, T.P. Labuza, Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J. Food Sci. 62(6), 1158–1162 (1997)

    CAS  Google Scholar 

  36. R. Surana, A. Pyne, R. Suryanarayanan, Effect of preparation method on physical properties of amorphous trehalose. Pharm. Res. 21(7), 1167–1176 (2004)

    PubMed  CAS  Google Scholar 

  37. V. Sanchez, R. Baeza, M.V. Galmarini, M.C. Zamora, J. Chirife, Freeze-drying encapsulation of red wine polyphenols in an amorphous matrix of maltodextrin. Food and Bioprocess Technol. 6(5), 1350–1354 (2013). https://doi.org/10.1007/s11947-011-0654-z

    Google Scholar 

  38. Wang W, Zhou WJF & Technology B (2013) Water adsorption and glass transition of spray-dried soy sauce powders using maltodextrins as carrier. 6(10), 2791-2799

  39. T.G. Fox Jr., P.J. Flory, Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21(6), 581–591 (1950)

    CAS  Google Scholar 

  40. Y. Roos, M. Karel, Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Prog. 7(1), 49–53 (1991a)

    CAS  Google Scholar 

  41. K. Zeleznak, R. Hoseney, The glass transition in starch. Cereal Chem. 64(2), 121–124 (1987)

    CAS  Google Scholar 

  42. M. Descamps, J. Willart, E. Dudognon, V. Caron, Transformation of pharmaceutical compounds upon milling and comilling: The role of Tg. J. Pharm. Sci. 96(5), 1398–1407 (2007)

    PubMed  CAS  Google Scholar 

  43. M. Cano-Chauca, P. Stringheta, A. Ramos, J. Cal-Vidal, Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Sci. Emerg. Technol. 6(4), 420–428 (2005)

    CAS  Google Scholar 

  44. N. Jovanović, A. Bouchard, G.W. Hofland, G.-J. Witkamp, D.J. Crommelin, W. Jiskoot, Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Eur. J. Pharm. Sci. 27(4), 336–345 (2006)

    PubMed  Google Scholar 

  45. R. Lefort, A. De Gusseme, J.-F. Willart, F. Danede, M. Descamps, Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: An application to ball-milling of trehalose. Int. J. Pharm. 280(1), 209–219 (2004)

    PubMed  CAS  Google Scholar 

  46. P. Dawson, D. Hockley, Scanning electron microscopy of freeze-dried preparations: Relationship of morphology to freeze-drying parameters. Dev. Biol. Stand. 74, 185–192 (1991)

    Google Scholar 

  47. S. Devi, D. Williams, Morphological and compressional mechanical properties of freeze-dried mannitol, sucrose, and Trehalose cakes. J. Pharm. Sci. 102(12), 4246–4255 (2013)

    PubMed  CAS  Google Scholar 

  48. M. Bruschi, M. Cardoso, M. Lucchesi, M. Gremião, Gelatin microparticles containing propolis obtained by spray-drying technique: Preparation and characterization. Int. J. Pharm. 264(1), 45–55 (2003)

    PubMed  CAS  Google Scholar 

  49. J. Loksuwan, Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 21(5), 928–935 (2007)

    CAS  Google Scholar 

  50. Z.-Y. Zhang, Q.-N. Ping, B. Xiao, Microencapsulation and characterization of tramadol–resin complexes. J. Control. Release 66(2), 107–113 (2000)

    PubMed  CAS  Google Scholar 

  51. N.T. Eriksen, Production of phycocyanin—A pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 80(1), 1–14 (2008)

    PubMed  CAS  Google Scholar 

  52. V. Stadnichuk, E. Lukashev, M. Yanyushin, D. Zlenko, E. Muronez, I. Stadnichuk, et al., in Doklady Biochemistry and Biophysics. Energy transfer pathways among phycobilin chromophores and fluorescence emission spectra of the phycobilisome core at 293 and 77 K, vol 465 (Springer, 2015), pp. 401–405, Vol. 1

  53. C. Toong, Understanding Thermal Stability and Environmental Sensitivity of Phycocyanin Using Spectroscopic and Modelling Tools (University of Massachusetts, Amherst, MSc Thesis, 2018)

    Google Scholar 

  54. B.C. Hancock, C.R. Dalton, The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars. Pharm. Dev. Technol. 4(1), 125–131 (1999)

    PubMed  CAS  Google Scholar 

  55. V. Maidannyk, B. Nurhadi, Y. Roos, Structural strength analysis of amorphous trehalose-maltodextrin systems. Food Res. Int. 96, 121–131 (2017)

    PubMed  CAS  Google Scholar 

  56. D. Van Drooge, W. Hinrichs, H. Frijlink, Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent. J. Pharm. Sci. 93(3), 713–725 (2004)

    PubMed  Google Scholar 

  57. A. Saleki-Gerhardt, G. Zografi, Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm. Res. 11(8), 1166–1173 (1994)

    PubMed  CAS  Google Scholar 

  58. L.S. Taylor, Carbohydrates as Protein Stabilizing Agents (University of Bradford, 1996)

  59. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    CAS  Google Scholar 

  60. M.A. Righetto, M.F. Netto, Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature acerola. Int. J. Food Prop. 8(2), 337–346 (2005)

    CAS  Google Scholar 

  61. T.P. Labuza, Moisture sorption: Practical aspects of isotherm measurement and use. Mol. Nutr. Food Res. 29(1), 92–92 (1985)

    Google Scholar 

  62. E. Tsami, D. Marinos-Kouris, Z. Maroulis, Water sorption isotherms of raisins, currants, figs, prunes and apricots. J. Food Sci. 55(6), 1594–1597 (1990)

    Google Scholar 

  63. P. Belton, A. Gil, IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34(7), 957–961 (1994)

    PubMed  CAS  Google Scholar 

  64. J.F. Carpenter, J.H. Crowe, An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28(9), 3916–3922 (1989)

    PubMed  CAS  Google Scholar 

  65. W. Hinrichs, M. Prinsen, H. Frijlink, Inulin glasses for the stabilization of therapeutic proteins. Int. J. Pharm. 215(1), 163–174 (2001)

    PubMed  CAS  Google Scholar 

  66. M. Kupka, H. Scheer, Unfolding of C-Phycocyanin followed by loss of non-covalent chromophore–protein interactions: 1. Equilibrium experiments. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1777(1), 94–103 (2008)

    CAS  Google Scholar 

  67. M.A. Mensink, H.W. Frijlink, K. van der Voort Maarschalk, W.L. Hinrichs, How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm 114, 288–295 (2017)

    PubMed  CAS  Google Scholar 

  68. A. Tigerström, The Biologist's forum: Thermostability of proteins. Bios 76(1), 22–27 (2005)

    Google Scholar 

  69. L.M. Crowe, Lessons from nature: The role of sugars in anhydrobiosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131(3), 505–513 (2002)

    PubMed  Google Scholar 

  70. Estupiñan D, Schwartz S & Garzón GJJofs (2011) Antioxidant activity, total phenolics content, anthocyanin, and color stability of isotonic model beverages colored with Andes berry (Rubus glaucus Benth) anthocyanin powder. 76(1), S26-S34

  71. M.V. Galmarini , C. Maury, E. Mehinagic, et al., Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food Bioprocess Technol. 6(12), 3585-3595 (2013). https://doi.org/10.1007/s11947-012-1035-y

    Google Scholar 

  72. C. Osorio, B. Acevedo, S. Hillebrand, J. Carriazo, P. Winterhalter, M.A.L. JJoA, F. Chemistry, Microencapsulation by spray-drying of anthocyanin pigments from corozo. (Bactris guineensis) fruit 58(11), 6977–6985 (2010)

  73. N. Grasmeijer, M. Stankovic, H. de Waard, H.W. Frijlink, W.L. Hinrichs, Unraveling protein stabilization mechanisms: Vitrification and water replacement in a glass transition temperature controlled system. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834(4), 763–769 (2013)

    CAS  Google Scholar 

  74. M.A. Mensink, P.-J. Van Bockstal, S. Pieters, L. De Meyer, H.W. Frijlink, K. van der Voort Maarschalk, et al., In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability. Int. J. Pharm. 496(2), 792–800 (2015)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Faieta or Paola Pittia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faieta, M., Corradini, M.G., Di Michele, A. et al. Effect of Encapsulation Process on Technological Functionality and Stability of Spirulina Platensis Extract. Food Biophysics 15, 50–63 (2020). https://doi.org/10.1007/s11483-019-09602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09602-1

Keywords

Navigation