Skip to main content
Log in

Birds foraging search: a novel population-based algorithm for global optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Population-based algorithms have become a research hotspot for optimization problems and have been widely applied in various fields in recent decades. This paper presents the birds foraging search (BFS) algorithm, which is a novel population-based optimizer inspired by the different behaviors of birds during the foraging process for solving global optimization problems. The overall framework of the proposed algorithm involves three phases: the flying search behavior phase, the territorial behavior phase and the cognitive behavior phase. In the proposed algorithm, the first two phases balance the exploration and exploitation capabilities of the algorithm, and the third phase enhances the search efficiency. Classical benchmarks and CEC2014 benchmarks are employed to fully evaluate the performance of our BFS. The statistical results reveal that the BFS algorithm outperforms other conventional approaches and state-of-the art algorithms in terms of accuracy and convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  2. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memetic Comp 6:31–47. https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  3. Barmada S, Raugi M, Tucci M (2016) An evolutionary algorithm for global optimization based on self-organizing maps. Eng Optimiz 10:1–19. https://doi.org/10.1080/0305215X.2015.1128424

    MathSciNet  Google Scholar 

  4. Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73. https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  5. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life; Paris, France, 1991, pp 134–142

  6. Eberhart RC, Kennedy J (1995) A new optimizer using particles swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan, 1995, pp 39–43. http://dx.doi.org/10.1109/mhs.1995.494215

  7. Fedy BC, Stutchbury BJM (2004) Territory switching and floating in white-bellied antbird (myrmeciza longipes), a resident tropical passerine in panama. Auk 121:486–496. https://doi.org/10.1642/0004-8038(2004)121%5B0486:TSAFIW%5D2.0.CO;2

    Article  Google Scholar 

  8. Healy SD, Hurly TA (2003) Cognitive ecology: foraging in hummingbirds as a model system. Adv Stud Behav 32:325–359. https://doi.org/10.1016/S0065-3454(03)01007-6

    Article  Google Scholar 

  9. Holland J (1992) Genetic algorithms. Sci Am 267:66–72. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  10. Jaddi NS, Alvankarian J, Abdullah S (2017) Kidney-inspired algorithm for optimization problems. Commun Nonlinear Sci 42:358–369. https://doi.org/10.1016/j.cnsns.2016.06.006

    Article  Google Scholar 

  11. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  13. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 42:671–680

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang JJ, Qu BY, Suganthan PN (2014) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real parameter numerical optimization, Tech. Rep. 201311, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China

  15. Lorimer JW (2006) Curved paths in raptor flight: deterministic models. J Exp Biol 242:880. https://doi.org/10.1016/j.jtbi.2006.03.020

    MathSciNet  Google Scholar 

  16. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  17. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  18. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  19. Moosavi SHS, Bardsiri VK (2017) Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng Appl Artif Intel 60:1–15. https://doi.org/10.1016/j.engappai.2017.01.006

    Article  Google Scholar 

  20. Newton I (1979) Population ecology of raptors. J Anim Ecol 50:1–399. https://doi.org/10.2307/4081

    Google Scholar 

  21. Pan JS, Meng Z, Chu SC, Xu HR (2017) Monkey King Evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment. Telecommun Syst 65:351–364. https://doi.org/10.1007/s11235-016-0237-4

    Article  Google Scholar 

  22. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-Based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  23. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inform Sciences 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  24. Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. Mach Learn Proc 293–301. http://doi.org/10.1016/B978-1-55860-335-6.50043-X

  25. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun G, Zhao R, Lan Y (2016) Joint operations algorithm for large-scale global optimization. Appl Soft Comput 38:1025–1039. https://doi.org/10.1016/j.asoc.2015.10.047

    Article  Google Scholar 

  27. Tabari A, Ahmad A (2017) A new optimization method: electro-search algorithm. Comput Chem Eng 103:1–11. https://doi.org/10.1016/j.compchemeng.2017.01.046

    Article  Google Scholar 

  28. Wang GG (2016) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comp 1–14. https://doi.org/10.1007/s12293-016-0212-3

  29. Wimpenny JH, Weir AA, Clayton L, Rutz C, Kacelnik A (2009) Cognitive processes associated with sequential tool use in New Caledonian crows. PLoS ONE 4:1–16. https://doi.org/10.1371/journal.pone.0006471

    Article  Google Scholar 

  30. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  31. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspir Com 2:78–84. https://doi.org/10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  32. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: Proceedings of the world congress on nature and biologically inspired computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp 210–214. http://doi.org/10.1109/NABIC.2009.5393690

  33. Yasukawa K (1979) Territory establishment in red-winged blackbirds: importance of aggressive behavior and experience. Condor 81:258–264. https://doi.org/10.2307/1367628

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the editors and anonymous reviewers whose kind assistance and constructive comments helped to significantly improve this paper. This work is supported by the National Natural Science Foundation of China under Grant No. 61601505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqiao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Huang, C., Dong, K. et al. Birds foraging search: a novel population-based algorithm for global optimization. Memetic Comp. 11, 221–250 (2019). https://doi.org/10.1007/s12293-019-00286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-019-00286-1

Keywords

Navigation