Skip to main content
Log in

Stratification and mixing processes associated with hypoxia in a shallow lake (Lake Kasumigaura, Japan)

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Physical processes associated with hypoxia events in a shallow lake, Lake Kasumigaura, Japan, are investigated with long-term mooring observations at the middle of the lake basin. Results show that strong stratification during the summer suppresses vertical mixing resulting in hypoxia in the bottom boundary layer. The dissolved oxygen decreases due to the limited oxygen supply under strongly stratified conditions. The intensity of the stratification is controlled by the ratio between surface wind stress and the surface incoming buoyancy flux. The Monin–Obukhov length scale explains the stratification and shows good agreement with the Froude number and Wedderburn number. The stratification is also enhanced by the heat flux towards the sediments, reaching O (100) W m−2, during the summer season. In addition to field observations, this study conducted numerical simulations to further investigate mixing structure. Results from numerical simulations indicate that the bottom sediment heat flux significantly contributes to mixing and stratification in the lake. This study suggests that mixing processes associated with winds and heat flux at surface and bottom sediments are the key to understanding hypoxia events in Lake Kasumigaura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen JI, Somerfield PJ, Gilbert FJ (2007) Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J Mar Syst 64(1–4):3–14

    Article  Google Scholar 

  • Auger G, Yamazaki H, Nagai T, Jiao C, Kumagai M (2013) Hypolimnetic turbulence generation associated with superposition of large-scale internal waves in a strongly stratified lake: Lake Biwa, Japan. Limnology 14(3):229–238

    Article  Google Scholar 

  • Bernhardt J, Kirillin G, Hupfer M (2014) Periodic convection within littoral lake sediments on the background of seiche-driven oxygen fluctuations. Limnol Oceanogr Fluids Environ 4(1):17–33

    Article  Google Scholar 

  • Breitburg DL, Loher T, Pacey CA, Gerstein A (1997) Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol Monogr 67(4):489–507

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes1. Limnol Oceanogr 22(2):361–369

    Article  CAS  Google Scholar 

  • Cossu R, Wells MG (2013) The interaction of large amplitude internal seiches with a shallow sloping lakebed: observations of benthic turbulence in Lake Simcoe, Ontario, Canada. PLoS ONE 8(3):e57444

    Article  CAS  Google Scholar 

  • Dillon TM, Richman JG, Hansen CG, Pearson MD (1981) Near-surface turbulence measurements in a lake. Nature 290(5805):390

    Article  Google Scholar 

  • Fang X, Stefan HG (1996) Long-term lake water temperature and ice cover simulations/measurements. Cold Reg Sci Technol 24(3):289–304

    Article  Google Scholar 

  • Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model 14(3–4):139–173

    Article  Google Scholar 

  • Gu R, Luck FN, Stefan HG (1996) Water quality stratification in shallow wastewater stabilization ponds 1. JAWRA J Am Water Resourc Assoc 32(4):831–844

    Article  CAS  Google Scholar 

  • Havens KE, Fukushima T, Xie P, Iwakuma T, James RT, Takamura N, Hanazato T, Yamamoto T (2001) Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environ Pollut 111(2):263–272

    Article  CAS  Google Scholar 

  • Hawley N, Johengen TH, Rao YR, Ruberg SA, Beletsky D, Ludsin SA, Eadie BJ, Schwab DJ, Croley TE, Brandt SB (2006) Lake Erie hypoxia prompts Canada-US study. Eos Trans Am Geophys Union 87(32):313–319

    Article  Google Scholar 

  • Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45(7):1603–1620

    Article  Google Scholar 

  • Homma T, Komatsu N, Negishi M, Nakamura K, Park H (2008) Relationship between Microcytis morphospecies composition and nutrient concentration in the water basin (Nishiura, Kitaura) of Kasumigaura, Japan (in Japanese). Nippon Suisan Gakkaishi 72(2):189–198

    Article  Google Scholar 

  • Homma H, Nagai T, Shimizu K, Yamazaki H (2016) Early-winter mixing event associated with baroclinic motions in weakly stratified Lake Biwa. Inland Waters 6(3):364–378

    Article  CAS  Google Scholar 

  • Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26

    Article  Google Scholar 

  • Imberger J (1985) The diurnal mixed layer 1. Limnol Oceanogr 30(4):737–770

    Article  Google Scholar 

  • Imberger J (1998) Flux paths in a stratified lake: a review. Phys Process Lakes Oceans 54:1–7 (American Geophysical Union)

    Article  Google Scholar 

  • Lee YJ, Lwiza KM (2008) Characteristics of bottom dissolved oxygen in Long Island sound, New York. Estuar Coast Shelf Sci 76(2):187–200

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA/ERL GFDL Professional Paper 13, Princeton (NTISPB83-184093)

  • MacIntyre S, Flynn KM, Jellison R, Romero JR (1999) Boundary mixing and nutrient fluxes in Mono Lake, California. Limnol Oceanogr 44(3):512–529

    Article  CAS  Google Scholar 

  • Masunaga E, Yamazaki H (2014) A new tow-yo instrument to observe high-resolution coastal phenomena. J Mar Syst 129:425–436

    Article  Google Scholar 

  • Masunaga E, Arthur RS, Fringer O (2019) Internal wave breaking dynamics and associated mixing in the coastal oceans, encyclopedia of Ocean Science, 3rd edn. Academic Press, Cambridge, pp 548–554

  • Matzinger A et al (2007) Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol Oceanogr 52(1):338–353

    Article  CAS  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Millero FJ, Poisson A (1981) International one-atmosphere equation of state of seawater. Deep Sea Res Part A Oceanogr Res Pap 28(6):625–629

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187

    Google Scholar 

  • Monismith SG, Imberger J, Morison ML (1990) Convective motions in the sidearm of a small reservoir. Limnol Oceanogr 35(8):1676–1702

    Article  Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res Part I Oceanogr Res Pap 45(12):1977–2010

    Article  Google Scholar 

  • Nakamura T, Watanabe M (2005) Re-evolution of groundwater dynamics about water and nutrient budget in Lake Kasumigaura. J Jpn Soc Civ Eng B1(49):1231–1236

    Google Scholar 

  • Nakanose H, Kaburagi M, Kuroda H, Kato T (2005) A study on the low DO distribution in the Lake Kasumigaura (in Japanease). Trans JSIDRE 239:9–17

    Google Scholar 

  • OECD (1982) Eutrophication of waters: monitoring, assessment and control. OECD, Paris

    Google Scholar 

  • Payne RE (1972) Albedo of the sea surface. J Atmos Sci 29:959–969

    Article  Google Scholar 

  • Ibaraki Prefecture (2012) An introduction to Kahology, II-4, Ibaraki Prefecture (in Japanese)

  • Rabalais NN (2002) Nitrogen in aquatic ecosystems. AMBIO J Hum Environ 31(2):102–113

    Article  Google Scholar 

  • Rao YR, Hawley N, Charlton MN, Schertzer WM (2008) Physical processes and hypoxia in the central basin of Lake Erie. Limnol Oceanogr 53(5):2007–2020

    Article  CAS  Google Scholar 

  • Spigel RH, Imberger J (1987) Mixing processes relevant to phytoplankton dynamics in lakes. NZ J Mar Freshw Res 21(3):361–377

    Article  Google Scholar 

  • Tundisi JG et al (1984) Mixing patterns in Amazon lakes. Hydrobiologia 108(1):3–15

    Article  CAS  Google Scholar 

  • Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35(1):373–412

    Article  Google Scholar 

  • Xing Z, Fong DA, Yat-Man Lo E, Monismith SG (2014) Thermal structure and variability of a shallow tropical reservoir. Limnol Oceanogr 59(1):115–128

    Article  Google Scholar 

  • Yamazaki H, Honma H, Nagai T, Doubell MJ, Amakasu K, Kumagai M (2008) Multilayer biological structure and mixing in the upper water column of Lake Biwa during summer 2008. Limnology 11(1):63–70

    Article  Google Scholar 

  • Yoshimizu C, Yoshiyama K, Tayasu I, Koitabashi T, Nagata T (2010) Vulnerability of a large monomictic lake (Lake Biwa) to warm winter event. Limnology 11(3):233–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the JSPS Grant-in-Aid for Scientific Research (No. 19K20432). We thank the staff operating the mooring systems at the Kamaya Mooring Station (Japan Water Agency). The authors gratefully acknowledge the laboratory staff, Mr. Daiki Asaoka and Ms. Tomoko Ozawa, for their assistance with the deployment of a mooring array and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Masunaga.

Additional information

Handling Editor: Hidekatsu Yamazaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masunaga, E., Komuro, S. Stratification and mixing processes associated with hypoxia in a shallow lake (Lake Kasumigaura, Japan). Limnology 21, 173–186 (2020). https://doi.org/10.1007/s10201-019-00600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-019-00600-3

Keywords

Navigation