Skip to main content
Log in

Development of functional molecular assemblies based on programmable construction of face-to-face assemblies of metallo-porphyrinoids

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Metallo-porphyrinoids are known to possess various unique physical and chemical properties depending on their porphyrinoid skeleton structure, as well as the nature of their central metal ions. A useful strategy for the production of novel functional molecular assemblies, utilizing metallo-porphyrinoids as molecular modules, is to assemble them in a cofacial fashion. Such assemblies allow synergistic inter-component electronic communication, or functional cooperativity among the components to achieve unique functions. In this sense, programmable construction of discrete cofacial assemblies composed of different types of metallo-porphyrinoids is appealing because the their functions can be controlled by changing various parameters, namely the relative distance, relative angle, number, and nature of assembled components. However, as porphyrinoids are prone to self-assemble with face-to-face geometry to produce one-dimensional polymeric structures because of their highly planar structure, it is challenging to construct diverse face-to-face assemblies of metallo-porphyrinoids in a pre-designed fashion. In order to overcome these difficulties, appropriate synthetic methodologies are necessary. These are broadly divided into two approaches; one is to utilize covalent bond formation, and the other is to utilize non-covalent interactions. This review summarizes synthetic methodologies applied toward the programmable construction of discrete cofacial assemblies composed of various metallo-porphyrinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Beletskaya, I., Tyurin, V.S., Tsivadze, A.Y., Guilard, R., Stern, C.: Supramolecular chemistry of metalloporphyrins. Chem. Rev. 109, 1659–1713 (2009)

    CAS  PubMed  Google Scholar 

  2. Elemans, J.A.A.W., Hameren, R.V., Nolte, R.J.M., Rowan, A.E.: Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 18, 1251–1266 (2006)

    CAS  Google Scholar 

  3. Ishi-i, T., Shinkai, S.: Dye-based organogels: stimuli-responsive soft materials based on one-dimensional self-assembling aromatic dyes. Top. Curr. Chem. 258, 119–160 (2005)

    CAS  Google Scholar 

  4. Aratani, N., Osuka, A.: Exploration of giant functional porphyrin arrays. Bull. Chem. Soc. Jpn. 88, 1–27 (2015)

    Google Scholar 

  5. Torre, G., Bottari, G., Sekita, M., Hausmann, A., Guldi, D.M., Torres, T.: A voyage into the synthesis and photophysics of homo- and heterobinuclear ensembles of phthalocyanines and porphyrins. Chem. Soc. Rev. 42, 8049–8105 (2013)

    PubMed  Google Scholar 

  6. Otsuki, J.: Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A 6, 6710–6753 (2018)

    CAS  Google Scholar 

  7. Mukhopadhyay, R.D., Kim, Y., Koo, J., Kim, K.: Porphyrin boxes. Acc. Chem. Res. 51, 2730–2738 (2018)

    CAS  PubMed  Google Scholar 

  8. Durot, S., Taesch, J., Heitz, V.: Multiporphyrinic cages: architectures and functions. Chem. Rev. 114, 8542–8578 (2014)

    CAS  PubMed  Google Scholar 

  9. Lo, P.-C., Leng, X., Ng, D.K.P.: Hetero-arrays of porphyrins and phthalocyanines. Coord. Chem. Rev. 251, 2334–2353 (2007)

    CAS  Google Scholar 

  10. Collman, J.P., Denisevich, P., Konai, Y., Marrocco, M., Koval, C., Anson, F.C.: Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J. Am. Chem. Soc. 102, 6027–6036 (1980)

    CAS  Google Scholar 

  11. Guilard, R., Lopez, M.A., Tabard, A., Richard, P., Lecomte, C., Brandes, S., Hutchison, J.E., Collman, J.P.: Synthesis and characterization of novel cobalt aluminum cofacial porphyrins first crystal and molecular structure of a heterobimetallic biphenylene pillared cofacial diporphyrin. J. Am. Chem. Soc. 114, 9877–9889 (1992)

    CAS  Google Scholar 

  12. Stulz, E.: Nanoarchitectonics with porphyrin functionalized DNA. Acc. Chem. Res. 50, 823–831 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fendt, L.-A., Bouamaied, I., Thöni, S., Amiot, N., Stulz, E.: DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale. J. Am. Chem. Soc. 129, 15319–15329 (2007)

    CAS  PubMed  Google Scholar 

  14. Yamada, Y., Kubota, T., Nishio, M., Tanaka, K.: Sequential and spatial organization of metal complexes inside a peptide duplex. J. Am. Chem. Soc. 136, 6505–6509 (2014)

    CAS  PubMed  Google Scholar 

  15. Nielsen, P.E., Egholm, M.: An introduction to peptide nucleic acid. Curr. Issue Mol. Biol. 1, 89–104 (1999)

    CAS  Google Scholar 

  16. Ojadi, E., Selzer, R., Linschitz, H.: Properties of porphyrin dimers, formed by pairing cationic and anionic porphyrins. J. Am. Chem. Soc. 107, 7783–7784 (1985)

    CAS  Google Scholar 

  17. Buchler, J.W., Nawra, M.: Metal complexes with tetrapyrrole ligands 711 Heteroaggregation of cationic metal mono- and bisporphyrinates with anionic metal porphyrinates or indigosulfonates. Inorg. Chim. Acta. 251, 227–237 (1996)

    CAS  Google Scholar 

  18. Yamamoto, K., Nakazawa, S., Imaoka, T.: Manganese-cerium porphyrin tri-nuclear complex as a catalyst for water oxidation. Mol. Cryst. Liq. Cryst. 379, 407–412 (2002)

    CAS  Google Scholar 

  19. Costanzo, L.D., Geremia, S., Randaccio, L., Purrello, R., Lauceri, R., Sciotto, D., Gulino, F.G., Pavone, V.: Calixarene–porphyrin supramolecular complexes: pH-tuning of the complex stoichiometry. Angew. Chem. Int. Ed. 40, 4245–4247 (2001)

    Google Scholar 

  20. Satake, A., Sugimura, T., Kobuke, Y.: Coordination-induced sliding motion of a complementary porphyrin-phthalocyanine dimer: fluorescence-based molecular switch. J. Porphyr. Phthalocya. 13, 326–335 (2009)

    CAS  Google Scholar 

  21. Zhao, Z., Cammidge, A.N., Hughes, D.L., Cook, M.J.: Modular face-to-face assembly of multichromophore arrays that absorb across the complete UV–visible spectrum and into the near-IR. Org. Lett. 12, 5138–5141 (2010)

    CAS  PubMed  Google Scholar 

  22. Gross, T., Chevalier, F., Lindsey, J.S.: Investigation of rational syntheses of heteroleptic porphyrinic lanthanide (Europium, Cerium) triple-decker sandwich complexes. Inorg. Chem. 40, 4762–4774 (2001)

    CAS  PubMed  Google Scholar 

  23. Schweikart, K.-H., Malinovskii, V.L., Diers, J.R., Yasseri, A.A., Bocian, D.F., Kuhr, W.G., Lindsey, J.S.: Design, synthesis, and characterization of prototypical multistate counters in three distinct architectures. J. Mater. Chem. 12, 808–828 (2002)

    CAS  Google Scholar 

  24. Zhu, P., Pan, N., Li, R., Dou, J., Zhang, Y., Cheng, D.Y.Y., Wang, D., Ng, D.K.P., Jiang, J.: Electron-donating alkoxy-group-driven synthesis of heteroleptic tris(phthalocyaninato) lanthanide(III) triple-deckers with symmetrical molecular structure. Chem. Eur. J. 11, 1425–1432 (2005)

    CAS  PubMed  Google Scholar 

  25. Fukuda, T., Hata, K., Ishikawa, N.: Observation of exceptionally low-lying π-π excited states in oxidized forms of quadruple-decker phthalocyanine complexes. J. Am. Chem. Soc. 134, 14698–14701 (2012)

    CAS  PubMed  Google Scholar 

  26. Ono, K., Yoshizawa, M., Kato, T., Fujita, M.: Three-metal-center spin interactions through the intercalation of metal azaporphines and porphines into an organic pillared coordination box. Chem. Commun. 20, 2328–2330 (2008)

    Google Scholar 

  27. Sauvage, J.-P., Gaspard, P.: From Non-Covalent Assemblies to Molecular Machines. Wiley, Weinheim (2010)

    Google Scholar 

  28. Bruns, C.J., Stoddart, J.F.: Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014)

    CAS  PubMed  Google Scholar 

  29. Stoddart, J.F.: The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009)

    CAS  PubMed  Google Scholar 

  30. Yamada, Y., Okamoto, M., Furukawa, K., Kato, T., Tanaka, K.: Switchable intermolecular communication in a four-fold rotaxane. Angew. Chem. Int. Ed. 51, 709–713 (2012)

    CAS  Google Scholar 

  31. Ashton, P.R., Fyfe, M.C.T., Glink, P.T., Menzer, S., Stoddart, J.F., White, A.J.P., Williams, D.J.: Multiply stranded and multiply encircled pseudorotaxanes. J. Am. Chem. Soc. 119, 12514–12524 (1997)

    CAS  Google Scholar 

  32. Williams, A.R., Northrop, B.H., Houk, K.N., Stoddart, J.F., Williams, D.J.: The influence of constitutional isomerism and change on molecular recognition processes. Chem. Eur. J. 10, 5406–5421 (2004)

    CAS  PubMed  Google Scholar 

  33. Yamada, Y., Kato, T., Tanaka, K.: Assembly of multi-phthalocyanines on a porphyrin template by fourfold rotaxane formation. Chem. Eur. J. 22, 12371–12380 (2016)

    CAS  PubMed  Google Scholar 

  34. Yamada, Y., Okada, M., Tanaka, K.: Repetitive stepwise rotaxane formation toward programmable molecular arrays. Chem. Commun. 49, 11053–11055 (2013)

    CAS  Google Scholar 

  35. Yamada, Y., Mihara, N., Shibano, S., Sugimoto, K., Tanaka, K.: Triply stacked heterogeneous array of porphyrins and phthalocyanine through stepwise formation of a fourfold rotaxane and an ionic complex. J. Am. Chem. Soc. 135, 11505–11508 (2013)

    CAS  PubMed  Google Scholar 

  36. Mihara, N., Yamada, Y., Akine, S., Sugimoto, K., Tanaka, K.: Electronic perturbation of supramolecular conjugates of porphyrins and phthalocyanines. Chem. Commun. 53, 2230–2232 (2017)

    CAS  Google Scholar 

  37. Mihara, N., Yamada, Y., Tanaka, K.: Programmable arrangement of heterometal ions in a supramolecular array of porphyrin and phthalocyanine. Bull. Chem. Soc. Jpn. 90, 427–435 (2017)

    CAS  Google Scholar 

  38. Yamada, Y., Mihara, N., Tanaka, K.: Synthesis of a hetero-dinuclear metal complex in a porphyrin/phthalocyanine four-fold rotaxane. Dalton Trans. 42, 15873–15876 (2013)

    CAS  PubMed  Google Scholar 

  39. Stuzhin, P.A., Khelevina, O.G.: Azaporphyrins: structure of the reaction centre and reactions of complex formation. Coord. Chem. Rev. 147, 41–86 (1996)

    CAS  Google Scholar 

  40. O’Shea, D.F., Miller, M.A., Matsueda, H., Lindsey, J.S.: Investigation of the scope of heterogeneous and homogeneous procedures for preparing magnesium chelates of porphyrins, hydroporphyrins, and phthalocyanines. Inorg. Chem. 35, 7325–7338 (1996)

    PubMed  Google Scholar 

  41. Mihara, N., Yamada, Y., Furukawa, K., Kato, T., Tanaka, K.: Programmable arrangement of metal ions in a cofacially stacked assembly of porphyrinoids. Dalton Trans. 47, 7044–7049 (2018)

    CAS  PubMed  Google Scholar 

  42. Badjić, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart, J.F.: A molecular elevator. Science 303, 1845–1849 (2004)

    PubMed  Google Scholar 

  43. Badjić, J.D., Ronconi, C.M., Stoddart, J.F., Balzani, V., Silvi, S., Credi, A.: Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006)

    PubMed  Google Scholar 

  44. Dietrich-Buchecker, C.O., Sauvage, J.-P.: A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989)

    Google Scholar 

  45. Nierengarten, J.-F., Dietrich-Buchecker, C.O., Sauvage, J.-P.: Synthesis of a doubly interlocked [2]-catenane. J. Am. Chem. Soc. 116, 375–376 (1994)

    CAS  PubMed  Google Scholar 

  46. McArdle, C.P., Vittal, J.J., Puddephatt, R.J.: Molecular topology: easy self-assembly of an organometallic doubly braided [2]catenane. Angew. Chem. Int. Ed. 39, 3819–3822 (2000)

    CAS  Google Scholar 

  47. Forgan, R.S., Friedman, D.C., Stern, C.L., Bruns, C.J., Stoddart, J.F.: Directed self-assembly of a ring-in ring complex. Chem. Commun. 46, 5861–5863 (2010)

    CAS  Google Scholar 

  48. Beves, J.E., Danon, J.J., Leigh, D.A., Lemonnier, J.-F., Vitorica-Yrezabal, I.J.: A Solomon link through an interwoven molecular grid. Angew. Chem. Int. Ed. 54, 7555–7559 (2015)

    CAS  Google Scholar 

  49. Ayme, J.-F., Beves, J.E., Leigh, D.A., McBurney, R.T., Rissanen, K., Schultz, D.: A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012)

    CAS  Google Scholar 

  50. Leigh, D.A., Pritchard, R.G., Stephens, A.J.: A star of David catenane. Nat. Chem. 6, 978–982 (2014)

    CAS  PubMed  Google Scholar 

  51. Yamada, Y., Itoh, R., Ogino, S., Kato, T., Tanaka, K.: Dynamic molecular invasion into multiply interlocked catenane. Angew. Chem. Int. Ed. 56, 14124–14129 (2017)

    CAS  Google Scholar 

  52. Koshland Jr., D.E.: The key-lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl. 33, 2375–2378 (1994)

    Google Scholar 

  53. Zhang, W., Lai, W., Cao, R.: Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017)

    CAS  PubMed  Google Scholar 

  54. Lemon, C.M., Dogutan, D.K., Nocera, D.G.: Porphyrin and corrole platforms for water oxidation, oxygen reduction, and peroxide dismutation. In: Kadish, K.M. (ed.) et al. Handbook of Porphyrin Science, vol. 21, pp. 1–143. World Scientific Publishing, Singapore (2012)

    Google Scholar 

  55. Mihara, N., Yamada, Y., Takaya, H., Kitagawa, Y., Aoyama, S., Igawa, K., Tomooka, K., Tanaka, K.: Oxygen reduction to water by cofacial dimer of iron(III)-porphyrin and iron(III)-phthalocyanine linked throygh a highly flexible fourfold rotaxane. Chem. Eur. J. 23, 7508–7514 (2017)

    CAS  PubMed  Google Scholar 

  56. Ravi, M., Ranocchiari, M., van Bokhoven, J.A.: The direct catalytic oxidation of methane to methanol–a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017)

    CAS  Google Scholar 

  57. McDonald, A.R.: Que, L: High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord. Chem. Rev. 257, 414–428 (2013)

    CAS  Google Scholar 

  58. Nam, W.: Synthetic mononuclear nonheme iron-oxygen intermediates. Acc. Chem. Res. 48, 2415–2423 (2015)

    CAS  PubMed  Google Scholar 

  59. de Visser, S.P., Nam, W.: High-valent iron-oxo porphyrins in oxygenation reactions. In: Kadish, K.M. et al. (ed.) Handbook of Porphyrin Science, vol. 10, pp. 85–139. World Scientific Publishing, Singapore (2010)

    Google Scholar 

  60. Engelmann, X., Monte-Pérez, I., Ray, K.: Oxidation reactions with bioinspired mononuclear non-heme metal-oxo complexes. Angew. Chem. Int. Ed. 55, 7632–7649 (2016)

    CAS  Google Scholar 

  61. Sorokin, A.B.: Phthalocyanine metal complexes in catalysis. Chem. Rev. 113, 8152–8191 (2013)

    CAS  PubMed  Google Scholar 

  62. Afanasiev, P., Sorokin, A.B.: μ-Nitrido diiron macrocyclic platform: particular structure for particular catalysis. Acc. Chem. Res. 49, 583–593 (2016)

    CAS  PubMed  Google Scholar 

  63. Sorokin, A.B., Kudrik, E.V., Bouchu, D.: Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex. Chem. Commun. 22, 2562–2564 (2008)

    Google Scholar 

  64. Kudrik, E.V., Afanasiev, P., Alvarez, L.X., Dubourdeaux, P., Clémancey, M., Latour, J.-M., Blondin, G., Bouchu, D., Albrieux, F., Nefedov, S.E., Sorokin, A.B.: An N-bridged high-valent diiron-oxo species on a porphyrin platform that can oxidize methane. Nat. Chem. 4, 1024–1029 (2012)

    CAS  PubMed  Google Scholar 

  65. Ïşci, Ü., Faponle, A.S., Afanasiev, P., Albrieux, F., Briois, V., Ahsen, V., Dumoulin, F., Sorokin, A.B., de Visser, S.P.: Site-selective formation of an iron(iv)-oxo species at the more electron-rich iron atom of heteroleptic μ-nitrido diiron phthalocyanines. Chem. Sci. 6, 5063–5075 (2015)

    PubMed  PubMed Central  Google Scholar 

  66. Mihara, N., Yamada, Y., Takaya, H., Kitagawa, Y., Igawa, K., Tomooka, K., Fujii, H., Tanaka, K.: Site-selective supramolecular complexation activates catalytic ethane-oxidation by a nitrido-bridged iron porphyrinoid dimer. Chem. Eur. J. 25, 3369–3375 (2019)

    CAS  PubMed  Google Scholar 

  67. Yamada, Y., Morita, K., Mihara, N., Igawa, K., Tomooka, K., Tanaka, K.: Catalytic methane oxidation by supramolecular conjugate based on μ-nitrido-bridged iron porphyrinoid dimer. New. J. Chem. 43, 11477–11482 (2019)

    CAS  Google Scholar 

  68. Watanabe, K.: High-valent intermediates. In: Kadish, K.M., et al. (eds.) Porphyrin Handbook, pp. 97–117. Academic Press, San Diego (2000)

    Google Scholar 

  69. Poulos, T.L.: Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yokota, S., Fujii, H.: Critical factors in determining the heterolytic versus homolytic bond cleavage of terminal oxidants by iron(III) porphyrin complexes. J. Am. Chem. Soc. 140, 5127–5137 (2018)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (15H02167 and 19H00902) to KT, a JSPS KAKENHI Grant-in-Aid for challenging Exploratory Research (Number 16K13961) and Grant-in-Aid for Scientific Research (B) (Number 19H02787), and JST PRESTO (Number 14J04135) to YY.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuyuki Yamada or Kentaro Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a paper selected for the “SHGCS Japan Award of Excellence 2019”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Y., Tanaka, K. Development of functional molecular assemblies based on programmable construction of face-to-face assemblies of metallo-porphyrinoids. J Incl Phenom Macrocycl Chem 96, 197–213 (2020). https://doi.org/10.1007/s10847-019-00969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00969-9

Keywords

Navigation