Skip to main content
Log in

Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The biggest challenge in dispersion of nanoparticles in phase change materials (PCMs) is the physical stability of these particles in PCM. Numerous studies have evaluated the effect of different parameters on the stability of nanoparticles in PCM, but the effect of PCM polarity has rarely been investigated. In this study, the stability of functionalized and pristine multi-walled carbon nanotubes (MWCNTs) in three different PCMs with various polarity levels was investigated. The utilized PCMs were paraffin wax (nonpolar), stearic acid (partially polar), and polyethylene glycol (polar). Two different methods of functionalization of MWCNTs, with stearic acid and hexadecyl amine, were used to compare their stability in PCMs. The FTIR analysis and FESEM images reveal that the surface modification reactions were done thoroughly and MWCNTs are well dispersed in PCM. The results showed that pristine MWCNT is more stable in nonpolar PCMs (paraffin and stearic acid), while the samples containing functionalized MWCNT or surfactant had higher stability in polyethylene glycol. The three most stable samples were used to measure their thermal conductivity and heat release/storage capability. The addition of nanoparticles to all kinds of PCMs led to higher rate of heat storage and release. Moreover, the thermal conductivity of all PCMs improved by the introduction of nanoparticles. In both liquid and solid phases, nanoenhanced PCM had higher thermal conductivity compared to pure PCM with stearic acid containing 1 mass% of pristine MWCNT having the highest rate of enhancement at 16.82% for solid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

k :

Thermal conductivity (W m−1 K−1)

T :

Temperature (K)

t :

Time (s)

C p :

Specific heat (J kg−1 K−1)

d :

Diameter (nm)

g :

Acceleration gravity (m s−2)

H :

Vertical length (m)

Ra:

Rayleigh number

Gr:

Grashof number

Pr:

Prandtl number

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\varphi\) :

Volume fraction of nanoparticles

\(\rho\) :

Density (kg m−3)

\(\zeta\) :

Correction factor

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

s:

Solid

l:

Liquid

np:

Nanoparticle

pcm:

Phase change material

NePCM:

Nanoenhanced phase change material

FESEM:

Field emission scanning electron microscope

FTIR:

Fourier-transform infrared spectroscopy

PEG:

Polyethylene glycol

SA:

Stearic acid

PW:

Paraffin wax

References

  1. Alva G, Liu L, Huang X, Fang G. Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev. 2017;68:693–706.

    Google Scholar 

  2. Jaguemont J, Omar N, Van den Bossche P, Van Mierlo J. Phase-change materials (PCM) for automotive applications: a review. Appl Therm Eng. 2017;132:308–20.

    Google Scholar 

  3. Ladekar C, Choudhary S, Khandare S. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage. J Mech Sci Technol. 2017;31(6):2627–34.

    Google Scholar 

  4. Manikandan S, Selvam C, Praful PPS, Lamba R, Kaushik S, Zhao D, et al. A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  5. Swami VM, Autee AT, Anil T. Experimental analysis of solar fish dryer using phase change material. J Energy Storage. 2018;20:310–5.

    Google Scholar 

  6. Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev. 2017;74:26–50.

    CAS  Google Scholar 

  7. Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf. 2018;127:838–56.

    CAS  Google Scholar 

  8. Tao Y, He Y-L. A review of phase change material and performance enhancement method for latent heat storage system. Renew Sustain Energy Rev. 2018;93:245–59.

    CAS  Google Scholar 

  9. Cacua K, Murshed SMS, Pabón E, et al. Dispersion and thermal conductivity of TiO2/water nanofluid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08817-1.

    Article  Google Scholar 

  10. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126(3):1455–62.

    CAS  Google Scholar 

  11. Mousavi S, Esmaeilzadeh F, Wang X. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):879–901.

    CAS  Google Scholar 

  12. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    CAS  Google Scholar 

  13. Hassan M, Marin M, Ellahi R, Alamri SZ. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf Res. 2018;49(18):1837–48.

    Google Scholar 

  14. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  15. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh S. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    CAS  Google Scholar 

  16. Liu L, Su D, Tang Y, Fang G. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2016;62:305–17.

    CAS  Google Scholar 

  17. Shah KW. A review on enhancement of phase change materials-A nanomaterials perspective. Energy Build. 2018;175:57–68.

    Google Scholar 

  18. Jegadheeswaran S, Sundaramahalingam A, Pohekar SD. High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems. J Therm Anal Calorim. 2019;138:1137–66. https://doi.org/10.1007/s10973-019-08297-3.

    Article  CAS  Google Scholar 

  19. Al Ghossein RM, Hossain MS, Khodadadi J. Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. Int J Heat Mass Transf. 2017;107:697–711.

    CAS  Google Scholar 

  20. Liang W, Wang L, Zhu H, Pan Y, Zhu Z, Sun H, et al. Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage. Sol Energy Mater Sol Cells. 2018;180:158–67.

    CAS  Google Scholar 

  21. Mishra AK, Lahiri B, Philip J. Thermal conductivity enhancement in organic phase change material (phenol-water system) upon addition of Al2O3, SiO2 and TiO2 nano-inclusions. J Mol Liq. 2018;269:47–63.

    CAS  Google Scholar 

  22. Jeyaseelan TR, Azhagesan N, Pethurajan V. Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles. J Therm Anal Calorim. 2019;136(1):235–42.

    Google Scholar 

  23. Selvaraj V, Morri B, Nair LM, Krishnan H. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim. 2019;137:1527–36. https://doi.org/10.1007/s10973-019-08042-w.

    Article  CAS  Google Scholar 

  24. Kumar PM, Mylsamy K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J Therm Anal Calorim. 2019;136(1):121–32.

    Google Scholar 

  25. Harikrishnan S, Hussain SI, Devaraju A, Sivasamy P, Kalaiselvam S. Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. J Mech Sci Technol. 2017;31(10):4903–10.

    Google Scholar 

  26. Kumar KS, Kalaiselvam S. Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications. J Therm Anal Calorim. 2017;129(3):1647–57.

    Google Scholar 

  27. Wei S, Duan Z, Xia Y, et al. Preparation and thermal performances of microencapsulated phase change materials with a nano-Al2O3-doped shell. J Therm Anal Calorim. 2019;138:233–41. https://doi.org/10.1007/s10973-019-08097-9.

    Article  CAS  Google Scholar 

  28. He Y, Zhang N, Yuan Y, Cao X, Sun L, Song Y. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive. J Therm Anal Calorim. 2018;133(2):859–67.

    CAS  Google Scholar 

  29. Prabakaran R, Kumar JPN, Lal DM, Selvam C, Harish S. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08458-4.

    Article  Google Scholar 

  30. Temel UN, Somek K, Parlak M, Yapici K. Transient thermal response of phase change material embedded with graphene nanoplatelets in an energy storage unit. J Therm Anal Calorim. 2018;133(2):907–18.

    CAS  Google Scholar 

  31. Hou P, Mao J, Liu R, Chen F, Li Y, Xu C. Improvement in thermodynamic characteristics of sodium acetate trihydrate composite phase change material with expanded graphite. J Therm Anal Calorim. 2019;137(4):1295–306.

    CAS  Google Scholar 

  32. Xia Y, Cui W, Zhang H, Zou Y, Xiang C, Chu H, et al. Preparation and thermal performance of n-octadecane/expanded graphite composite phase-change materials for thermal management. J Therm Anal Calorim. 2018;131(1):81–8.

    CAS  Google Scholar 

  33. Cheng F, Huang Y, Wen R, Zhang X, Huang Z, Fang M, et al. Preparation and characterization of form-stable tetradecanol–palmitic acid expanded perlite composites containing carbon fiber for thermal energy storage. J Therm Anal Calorim. 2019;136(3):1217–25.

    CAS  Google Scholar 

  34. Zhou W, Li K, Zhu J, Li R, Cheng X, Liu F. Preparation and thermal cycling of expanded graphite/adipic acid composite phase change materials. J Therm Anal Calorim. 2017;129(3):1639–45.

    CAS  Google Scholar 

  35. Gu X, Qin S, Wu X, Li Y, Liu Y. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material. J Therm Anal Calorim. 2016;125(2):831–8.

    CAS  Google Scholar 

  36. Yu H, Gao J, Chen Y, Zhao Y. Preparation and properties of stearic acid/expanded graphite composite phase change material for low-temperature solar thermal application. J Therm Anal Calorim. 2016;124(1):87–92.

    CAS  Google Scholar 

  37. Motahar S, Alemrajabi AA, Khodabandeh R. Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat Mass Transf. 2016;52(8):1621–31.

    CAS  Google Scholar 

  38. Harish S, Orejon D, Takata Y, Kohno M. Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions. Appl Therm Eng. 2017;114:1240–6.

    CAS  Google Scholar 

  39. Salyan S, Suresh S. Multi-walled carbon nanotube laden with D-Mannitol as phase change material: characterization and experimental investigation. Adv Powder Technol. 2018;29:3183–91.

    CAS  Google Scholar 

  40. Nada S, Alshaer W. Experimental investigation of thermal conductivity enhancement of carbon foam saturated with PCM and PCM/MWCNTs composite for energy storage systems. Heat Mass Transf. 2019;55:2667–77. https://doi.org/10.1007/s00231-019-02610-4.

    Article  CAS  Google Scholar 

  41. Temel UN, Kurtulus S, Parlak M, Yapici K. Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials. J Therm Anal Calorim. 2018;132(1):631–41.

    CAS  Google Scholar 

  42. Wu S, Ma X, Peng D, Bi Y. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials. J Therm Anal Calorim. 2019;136(6):2353–61.

    CAS  Google Scholar 

  43. Meng L, Fu C, Lu Q. Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci. 2009;19(7):801–10.

    CAS  Google Scholar 

  44. Chen C, Chen X, Xu L, Yang Z, Li W. Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon. 2005;43(8):1660–6.

    CAS  Google Scholar 

  45. Hasanabadi S, Sadrameli SM, Soheili H, Moharrami H, Heyhat MM. A cost-effective form-stable PCM composite with modified paraffin and expanded perlite for thermal energy storage in concrete. J Therm Anal Calorim. 2019;136(3):1201–16.

    CAS  Google Scholar 

  46. Sun Q, Yuan Y, Zhang H, Cao X, Sun L. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim. 2017;130(3):1741–9.

    CAS  Google Scholar 

  47. Feng L, Wang C, Song P, Wang H, Zhang X. The form-stable phase change materials based on polyethylene glycol and functionalized carbon nanotubes for heat storage. Appl Therm Eng. 2015;90:952–6.

    CAS  Google Scholar 

  48. Shen S, Tan S, Wu S, Guo C, Liang J, Yang Q, et al. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials. Energy Convers Manag. 2018;157:41–8.

    CAS  Google Scholar 

  49. Li M, Chen M, Wu Z, Liu J. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Convers Manag. 2014;83:325–9.

    CAS  Google Scholar 

  50. Putra N, Rawi S, Amin M, Kusrini E, Kosasih EA, Mahlia TMI. Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. J Energy Storage. 2019;21:32–9.

    Google Scholar 

  51. Dhaidan NS, Khodadadi J. Melting and convection of phase change materials in different shape containers: a review. Renew Sustain Energy Rev. 2015;43:449–77.

    CAS  Google Scholar 

  52. Ziskind G. Modelling of heat transfer in phase change materials (PCMs) for thermal energy storage systems. In: Cabeza LF, editor. Advances in thermal energy storage systems. Elsevier: Amsterdam; 2015. p. 307–24.

    Google Scholar 

  53. Liu S, Li Y, Zhang Y. Mathematical solutions and numerical models employed for the investigations of PCMs׳ phase transformations. Renew Sustain Energy Rev. 2014;33:659–74.

    Google Scholar 

  54. Arıcı M, Tütüncü E, Kan M, Karabay H. Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls. Int J Heat Mass Transf. 2017;104:7–17.

    Google Scholar 

  55. Mahdi JM, Nsofor EC. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Appl Energy. 2018;211:975–86.

    CAS  Google Scholar 

  56. Parsazadeh M, Duan X. Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng. 2017;111:950–60.

    CAS  Google Scholar 

  57. Said M, Hassan H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit. Energy Convers Manag. 2018;171:903–16.

    CAS  Google Scholar 

  58. Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int J Heat Fluid Flow. 2010;31(4):613–21.

    CAS  Google Scholar 

  59. Saydam V, Duan X. Dispersing different nanoparticles in paraffin wax as enhanced phase change materials. J Therm Anal Calorim. 2019;135(2):1135–44.

    CAS  Google Scholar 

  60. Zeng Y, Fan L-W, Xiao Y-Q, Yu Z-T, Cen K-F. An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity. Int J Heat Mass Transf. 2013;66:111–7.

    CAS  Google Scholar 

  61. Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488(1–2):39–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Haghighi Khoshkhoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, S., Masoumi, H., Haghighi Khoshkhoo, R. et al. Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes. J Therm Anal Calorim 140, 2505–2518 (2020). https://doi.org/10.1007/s10973-019-09005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09005-x

Keywords

Navigation