Skip to main content
Log in

An overview of quantum cellular automata

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Quantum cellular automata are arrays of identical finite-dimensional quantum systems, evolving in discrete-time steps by iterating a unitary operator G. Moreover the global evolution G is required to be causal (it propagates information at a bounded speed) and translation-invariant (it acts everywhere the same). Quantum cellular automata provide a model/architecture for distributed quantum computation. More generally, they encompass most of discrete-space discrete-time quantum theory. We give an overview of their theory, with particular focus on structure results; computability and universality results; and quantum simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlbrecht A, Scholz VB, Werner AH (2011) Disordered quantum walks in one lattice dimension. J Math Phys 52(10):102201

    MathSciNet  MATH  Google Scholar 

  • Ahlbrecht A, Alberti A, Meschede D, Scholz VB, Werner AH, Werner RF (2012) Molecular binding in interacting quantum walks. New J Phys 14(7):073050

    Google Scholar 

  • Ambainis A, Childs AM, Reichardt BW, Špalek R, Zhang S (2010) Any and-or formula of size n can be evaluated in time n\(^{\wedge }\)1/2+o(1) on a quantum computer. SIAM J Comput 39(6):2513–2530

    MathSciNet  MATH  Google Scholar 

  • Andreu A, Pablo A, Pablo A, Di Molfetta G, Iván M, Dirac PM (2019) Lindblad and telegraph equations. Manuscript, Open quantum walks

  • Arnault P, Fabrice D (2017) Quantum walks and gravitational waves. Ann Phys 383:645–661

    MathSciNet  MATH  Google Scholar 

  • Arnault P, Di Molfetta G, Brachet M, Debbasch F (2016) Quantum walks and non-Abelian discrete gauge theory. Phys Rev A 94(1):012335

    MathSciNet  Google Scholar 

  • Arnault P, Pérez A, Arrighi P, Farrelly T (2019) Discrete-time quantum walks as fermions of lattice Gauge theory. Phys Rev A 99:032110

    Google Scholar 

  • Arrighi P, Fargetton R (2007) Intrinsically universal one-dimensional quantum cellular automata. In: Proceedings of DCM

  • Arrighi P, Grattage J (2010) A simple \(n\)-dimensional intrinsically universal quantum cellular automaton. Lang Autom Theory Appl 6031:70–81

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Dowek G (2010) On the completeness of quantum computation models. In: Programs, Proofs, Processes: 6th Conference on Computability in Europe, CIE, 2010, Ponta Delgada, Azores, Portugal, June 30–July 4, 2010, Proceedings, vol 6158, pp 21–30

  • Arrighi P, Dowek G (2012) The physical Church–Turing thesis and the principles of quantum theory. Int J Found Comput Sci 23:1131–1145

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Grattage J (2010) A quantum game of life. In: Second symposium on cellular automata “Journées Automates Cellulaires” (JAC 2010), Turku, 2010. TUCS Lecture Notes, vol 13, pp 31–42

  • Arrighi P, Nesme V (2010) The block neighborhood. In: TUCS (ed) Proceedings of JAC 2010, Turku, Finlande, pp 43–53

  • Arrighi P, Nesme V (2011) A simple block representation of reversible cellular automata with time-symmetry. In: 17th international workshop on cellular automata and discrete complex systems, (AUTOMATA 2011), Santiago de Chile

  • Arrighi P, Grattage J (2012a) Intrinsically universal \(n\)-dimensional quantum cellular automata. J Comput Syst Sci 78:1883–1898

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Grattage J (2012b) Partitioned quantum cellular automata are intrinsically universal. Nat Comput 11:13–22

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Facchini S (2013) Decoupled quantum walks, models of the klein-gordon and wave equations. EPL (Europhys Lett) 104(6):60004

    Google Scholar 

  • Arrighi P, Facchini F (2017) Quantum walking in curved spacetime: (3+1) dimensions, and beyond. Quantum Inf Comput 17(9–10):0810–0824 arXiv:1609.00305

    MathSciNet  Google Scholar 

  • Arrighi P, Martiel S (2017) Quantum causal graph dynamics. Phys Rev D 96(2):024026 arXiv:1607.06700

    MathSciNet  Google Scholar 

  • Arrighi P, Nesme V, Werner RF (2008) Quantum cellular automata over finite, unbounded configurations. In: Proceedings of LATA, Lecture Notes in Computer Science, vol 5196. Springer, Berlin, pp 64–75

  • Arrighi P, Fargetton R, Wang Z (2009) Intrinsically universal one-dimensional quantum cellular automata in two flavours. Fundam Inform 21:1001–1035

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Nesme V, Werner R (2010) Unitarity plus causality implies localizability. J Comput Syst Sci 77:372–378

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Nesme V, Werner R (2011a) Unitarity plus causality implies localizability (full version). J Comput Syst Sci 77(2):372–378

    MATH  Google Scholar 

  • Arrighi P, Nesme V, Werner RF (2011b) One-dimensional quantum cellular automata. IJUC 7(4):223–244

    MATH  Google Scholar 

  • Arrighi P, Fargetton R, Nesme V, Thierry E (2011c) Applying causality principles to the axiomatization of Probabilistic Cellular Automata. In: Proceedings of CiE 2011, Sofia, June 2011, LNCS, vol 6735, pp 1–10

    MATH  Google Scholar 

  • Arrighi P, Nesme V, Forets M (2014a) The dirac equation as a quantum walk: higher dimensions, observational convergence. J Phys A Math Theor 47(46):465302

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Stefano F, Marcelo F (2014b) Discrete lorentz covariance for quantum walks and quantum cellular automata. New J Phys 16(9):093007

    MathSciNet  Google Scholar 

  • Arrighi P, Facchini S, Forets M (2016) Quantum walking in curved spacetime. Quantum Inf Process 15:3467–3486

    MathSciNet  MATH  Google Scholar 

  • Arrighi P, Bény C, Farrelly T. (2019) A quantum cellular automaton for one-dimensional qed. ArXiv preprint arXiv:1903.07007

  • Avalle M, Genoni MG, Serafini A (2015) Quantum state transfer through noisy quantum cellular automata. J Phys A Math Theor 48(19):195304

    MathSciNet  MATH  Google Scholar 

  • Benjamin SC (2000) Schemes for parallel quantum computation without local control of qubits. Phys Rev A 61(2):020301

    Google Scholar 

  • Bialynicki-Birula I (1994) Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys Rev D 49(12):6920–6927

    MathSciNet  Google Scholar 

  • Bibeau-Delisle A, Bisio A, D’Ariano GM, Perinotti P, Tosini A (2015) Doubly special relativity from quantum cellular automata. EPL (Europhys Lett) 109(5):50003

    Google Scholar 

  • Bisio A, D’Ariano GM, Tosini A (2012) Quantum field as a quantum cellular automaton i: the dirac free evolution in one dimension. ArXiv preprint arXiv:1212.2839

  • Bisio A, D’Ariano GM, Perinotti P (2017) Quantum walks, Weyl equation and the Lorentz group. Found Phys 47(8):1065–1076

    MathSciNet  MATH  Google Scholar 

  • Bisio A, D’Ariano GM, Perinotti P, Tosini A (2018) Thirring quantum cellular automaton. Phys Rev A 97(3):032132

    Google Scholar 

  • Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1(1):23–30

    Google Scholar 

  • Boghosian BM, Taylor W (1998) Quantum lattice-gas model for the many-particle Schrödinger equation in d-dimensions. Phys Rev E 57(1):54–66

    MathSciNet  Google Scholar 

  • Bose S (2007) Quantum communication through spin chain dynamics: an introductory overview. Contemp Phys 48(1):13–30

    Google Scholar 

  • Bratteli O, Robinson D (1987) Operators algebras and quantum statistical mechanics. Springer, New York

    MATH  Google Scholar 

  • Brennen GK, Williams JE (2003) Entanglement dynamics in one-dimensional quantum cellular automata. Phys Rev A 68(4):042311

    MathSciNet  Google Scholar 

  • Cedzich C, Rybár T, Werner AH, Alberti A, Genske M, Werner RF (2013) Propagation of quantum walks in electric fields. Phys Rev Lett 111(16):160601

    Google Scholar 

  • Chandrashekar CM, Banerjee S, Srikanth R (2010) Relationship between quantum walks and relativistic quantum mechanics. Phys Rev A 81(6):62340

    Google Scholar 

  • Cirac JI, Perez-Garcia D, Schuch N, Verstraete F (2017) Matrix product unitaries: structure, symmetries, and topological invariants. J Stat Mech Theory Exp 8(2017):083105

    MathSciNet  Google Scholar 

  • Debbasch F (2018) Action principles for quantum automata and lorentz invariance of discrete time quantum walks. ArXiv preprint arXiv:1806.02313

  • Destri C, de Vega HJ (1987) Light cone lattice approach to fermionic theories in 2-d: the massive thirring model. Nucl Phys B 290:363

    MathSciNet  Google Scholar 

  • di Molfetta G, Debbasch F (2012) Discrete-time quantum walks: continuous limit and symmetries. J Math Phys 53(12):123302–123302

    MathSciNet  MATH  Google Scholar 

  • Di Molfetta G, Pérez A (2016) Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J Phys 18(10):103038

    Google Scholar 

  • Di Molfetta G, Arrighi P (2019) A quantum walk with both a continuous-time discrete-space limit and a continuous spacetime limit. Manuscript

  • Di Molfetta G, Brachet M, Debbasch F (2014) Quantum walks in artificial electric and gravitational fields. Phys A Stat Mech Appl 397:157–168

    MathSciNet  MATH  Google Scholar 

  • Durand-Lose J (2001) Representing reversible cellular automata with reversible block cellular automata. Discret Math Theor Comput Sci 145:154

    MATH  Google Scholar 

  • Dürr C, Santha M (1996) A decision procedure for unitary linear quantum cellular automata. In: Proceedings of the 37th IEEE symposium on foundations of computer science. IEEE, pp 38–45

  • Dürr C, Le Thanh H, Santha M (1996) A decision procedure for well-formed linear quantum cellular automata. In: Proceedings of STACS 96, Lecture Notes in Computer Science. Springer, pp 281–292

  • D’Ariano GM, Perinotti P (2013) Derivation of the Dirac equation from principles of information processing. Pre-print arXiv:1306.1934

  • Eisert J, Gross D (2009) Supersonic quantum communication. Phys Rev Lett 102(24):240501

    Google Scholar 

  • Farrelly T (2019) A review of quantum cellular automaton (To appear on the arXiv)

  • Farrelly TC, Short AJ (2014) Causal fermions in discrete space–time. Phys Rev A 89(1):012302

    Google Scholar 

  • Farrelly TC (2015) Insights from quantum information into fundamental physics. PhD thesis, University of Cambridge arXiv:1708.08897

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6):467–488

    MathSciNet  Google Scholar 

  • Feynman RP (1986) Quantum mechanical computers. Found Phys (Hist Arch) 16(6):507–531

    MathSciNet  Google Scholar 

  • Fitzsimons J, Twamley J (2006) Globally controlled quantum wires for perfect qubit transport, mirroring, and computing. Phys Rev Lett 97(9):90502

    Google Scholar 

  • Freedman M, Hastings MB (2019) Classification of quantum cellular automata. ArXiv preprint arXiv:1902.10285

  • Gandy R (1980) Church’s thesis and principles for mechanisms. In: The Kleene Symposium, North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Genske M, Alt W, Steffen A, Werner AH, Werner RF, Meschede D, Alberti A (2013) Electric quantum walks with individual atoms. Phys Rev Lett 110(19):190601

    Google Scholar 

  • Gross D, Nesme V, Vogts H, Werner RF (2012) Index theory of one dimensional quantum walks and cellular automata. Commun Math Phys 310(2):419–454

    MathSciNet  MATH  Google Scholar 

  • Gu M, Weedbrook C, Perales A, Nielsen MA (2009) More really is different. Phys D Nonlinear Phenom 238(9–10):835–839

    MathSciNet  MATH  Google Scholar 

  • Gütschow J (2010) Entanglement generation of Clifford quantum cellular automata. Appl Phys B 98:623–633

    MATH  Google Scholar 

  • Gütschow J, Uphoff S, Werner RF, Zimborás Z (2010) Time asymptotics and entanglement generation of Clifford quantum cellular automata. J Math Phys 51(1):015203

    MathSciNet  MATH  Google Scholar 

  • Gütschow J, Nesme V, Werner RF (2012) Self-similarity of cellular automata on abelian groups. J Cell Autom 7(2):83–113

    MathSciNet  MATH  Google Scholar 

  • Haah J (2019) Clifford quantum cellular automata: Trivial group in 2D and witt group in 3D. ArXiv preprint arXiv:1907.02075

  • Haah J, Fidkowski L, Hastings MB (2018) Nontrivial quantum cellular automata in higher dimensions. ArXiv preprint arXiv:1812.01625

  • Ibarra OH, Jiang T (1987) On the computing power of one-way cellular arrays. In: Proceedings of ICALP 87. Springer, London, pp 550–562

    Google Scholar 

  • Inokuchi S, Mizoguchi Y (2005) Generalized partitioned quantum cellular automata and quantization of classical CA. Int J Unconv Comput 1(2):149–160

    Google Scholar 

  • Joye A, Merkli M (2010) Dynamical localization of quantum walks in random environments. J Stat Phys 140(6):1–29

    MathSciNet  MATH  Google Scholar 

  • Karafyllidis IG (2004) Definition and evolution of quantum cellular automata with two qubits per cell. Phys Rev A 70:044301

    Google Scholar 

  • Kari J (1991) Reversibility of 2D cellular automata is undecidable. In: Cellular automata: theory and experiment, vol 45. MIT Press, pp 379–385

  • Kari J (1996) Representation of reversible cellular automata with block permutations. Theory Comput Syst 29(1):47–61

    MathSciNet  MATH  Google Scholar 

  • Kari J (1999) On the circuit depth of structurally reversible cellular automata. Fundam Inform 38(1–2):93–107

    MathSciNet  MATH  Google Scholar 

  • Kari K (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:2005

    MathSciNet  Google Scholar 

  • Kieu TD (2003) Computing the non-computable. Contemp Phys 44(1):51–71

    Google Scholar 

  • Love P, Boghosian B (2005) From Dirac to diffusion: decoherence in quantum lattice gases. Quantum Inf Process 4(4):335–354

    MATH  Google Scholar 

  • Mallick A, Chandrashekar CM (2016) Dirac cellular automaton from split-step quantum walk. Sci Rep 6:25779

    Google Scholar 

  • Mallick A, Mandal S, Karan A, Chandrashekar CM (2019) Simulating dirac hamiltonian in curved space-time by split-step quantum walk. J Phys Commun 3(1):015012

    Google Scholar 

  • Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U-J, Zoller P (2014) Two-dimensional lattice gauge theories with superconducting quantum circuits. Ann Phys 351:634–654

    MathSciNet  MATH  Google Scholar 

  • Mauro DAG, Franco M, Paolo P, Alessandro T (2014) The feynman problem and fermionic entanglement: fermionic theory versus qubit theory. Int J Mod Phys A 29(17):1430025

    MathSciNet  MATH  Google Scholar 

  • Mazoyer J (1987) A six-state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238

    MathSciNet  MATH  Google Scholar 

  • Meyer DA (1996) From quantum cellular automata to quantum lattice gases. J Stat Phys 85:551–574

    MathSciNet  MATH  Google Scholar 

  • Meyer DA, Shakeel A (2016) Quantum cellular automata without particles. Phys Rev A 93(1):012333

    Google Scholar 

  • Márquez-Martín I, Di Molfetta G, Pérez A (2017) Fermion confinement via quantum walks in (2+ 1)-dimensional and (3+ 1)-dimensional space-time. Phys Rev A 95(4):042112

    Google Scholar 

  • Nagaj D, Wocjan P (2008) Hamiltonian quantum cellular automata in one dimension. Phys Rev A 78(3):032311

    Google Scholar 

  • Nielsen MA (1997) Computable functions, quantum measurements, and quantum dynamics. Phys Rev Lett 79(15):2915–2918

    Google Scholar 

  • Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Paz JP, Zurek WH (2002) Environment-induced decoherence and the transition from quantum to classical. In: Fundamentals of quantum information, Lecture Notes in Physics. Springer, Berlin, pp 77–148

  • Pérez-Delgado CA, Cheung D (2007) Local unreversible cellular automaton ableitary quantum cellular automata. Phys Rev A 76(3):32320

    MathSciNet  Google Scholar 

  • Raussendorf R (2005) Quantum cellular automaton for universal quantum computation. Phys Rev A 72(2):22301

    MathSciNet  Google Scholar 

  • Raynal P (2017) Simple derivation of the Weyl and Dirac quantum cellular automata. Phys Rev A 95:062344

    Google Scholar 

  • Robens C, Brakhane S, Meschede D, Alberti A (2017) Quantum walks with neutral atoms: quantum interference effects of one and two particles. In: Laser spectroscopy: XXII international conference on laser spectroscopy (ICOLS2015). World Scientific, pp 1–15

  • Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R (2012) Two-particle Bosonic-Fermionic quantum walk via integrated photonics. Phys Rev Lett 108:010502

    Google Scholar 

  • Schaeffer L (2015) A physically universal quantum cellular automaton. In: Jarkko K (ed) Cellular automata and discrete complex systems. Springer, Berlin, pp 46–58

    MATH  Google Scholar 

  • Schlingemann DM, Vogts H, Werner RF (2008) On the structure of Clifford quantum cellular automata. J Math Phys 49:112104

    MathSciNet  MATH  Google Scholar 

  • Schumacher B, Werner R (2004) Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174,

  • Shakeel A (2019) The equivalence of Schrödinger and Heisenberg pictures in quantum cellular automata. arXiv:1807.01192

  • Shakeel A, Love PJ (2013) When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)? J Math Phys 54(9):092203

    MathSciNet  MATH  Google Scholar 

  • Strauch FW (2006a) Connecting the discrete-and continuous-time quantum walks. Phys Rev A 74(3):030301

    MathSciNet  Google Scholar 

  • Strauch FW (2006b) Relativistic quantum walks. Phys Rev A 73(5):054302

    MathSciNet  Google Scholar 

  • Strauch FW (2007) Relativistic effects and rigorous limits for discrete-and continuous-time quantum walks. J Math Phys 48:082102

    MathSciNet  MATH  Google Scholar 

  • Subrahmanyam V (2004) Entanglement dynamics and quantum-state transport in spin chains. Phys Rev A 69:034304

    Google Scholar 

  • Subrahmanyam V, Lakshminarayan A (2006) Transport of entanglement through a Heisenberg-XY spin chain. Phys Lett A 349(1–4):164–169

    Google Scholar 

  • Succi S, Benzi R (1993) Lattice boltzmann equation for quantum mechanics. Phys D Nonlinear Phenom 69(3):327–332

    MathSciNet  MATH  Google Scholar 

  • t’Hooft G (2016) The cellular automaton interpretation of quantum mechanics, vol 185. Fundamental theories of physics. Springer, Berlin

    Google Scholar 

  • Twamley J (2003) Quantum cellular automata quantum computing with endohedral fullerenes. Phys Rev A 67(5):52318–52500

    MathSciNet  Google Scholar 

  • Vallejo A, Romanelli A, Donangelo R (2018) Initial-state-dependent thermalization in open qubits. Phys Rev A 98(3):032319

    Google Scholar 

  • Van Dam W (1996) A Universal Quantum Cellular Automaton. In: Proceedings of PhysComp96, Inter Journal manuscript 91. New England Complex Systems Institute, pp 323–331

  • Van Dam W (1996) Quantum cellular automata. Masters thesis, University of Nijmegen, The Netherlands

  • Vollbrecht KGH, Cirac JI (2006) Reversible universal quantum computation within translation-invariant systems. Phys Rev A 73(1):012324

    Google Scholar 

  • von Neumann J (1955) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  • Wang G (2017) Efficient quantum algorithms for analyzing large sparse electrical networks. Quantum Inf Comput 17(11–12):987–1026

    MathSciNet  Google Scholar 

  • Watrous J (1995) On one-dimensional quantum cellular automata. In: Annual IEEE symposium on foundations of computer science, pp 528–537

  • Weinstein YS, Hellberg CS (2004) Quantum cellular automata pseudorandom maps. Phys Rev A 69(6):062301

    MathSciNet  MATH  Google Scholar 

  • Wiesner K (2008) Quantum cellular automata. ArXiv preprint arXiv:0808.0679

Download references

Acknowledgements

I was lucky to have, as regular co-authors, great researchers such as Pablo Arnault, Cédric Bény, Gilles Dowek, Giuseppe Di Molfetta, Stefano Facchini, Terry Farrelly, Marcelo Forets, Jon Grattage, Iván Márquez, Vincent Nesme, Armando Péres, Zizhu Wang, Reinhard Werner. I would like to thank Jarkko Kari and Grzegorz Rozenberg for inviting me to write this overview, a task which I had been postponing for too long.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arrighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to my high school Mathematics teacher, Anne Lefèvre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrighi, P. An overview of quantum cellular automata. Nat Comput 18, 885–899 (2019). https://doi.org/10.1007/s11047-019-09762-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09762-6

Keywords

Navigation