Skip to main content

Advertisement

Log in

Galvanostatic Electrodeposition of Thin-Film Ir–Ni Electrocatalyst on Copper Foam for HER Performance in Alkaline Electrolyte

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Iridium–nickel (Ir–Ni) film is of great interest for catalytic and corrosive environment applications. Ir–Ni thin films as an electrocatalyst for hydrogen evolution reaction (HER) were galvanostatically electrodeposited on copper (Cu) foam from an electrolyte containing 13.5 mM sodium hexabromoiridate(III) and 40.5 mM Ni sulphate hexahydrate, simultaneously compared with electrodeposited Ir and Ni thin films. The top surface morphology of the film was characterized by scanning electron microscopy. The chemical composition of the film was determined by energy-dispersive spectroscopy and X-ray photoelectron spectroscopy. The electrocatalytic performance was performed by linear sweep voltammogram and cyclic voltammetry. The results showed that Ir–Ni thin film adhered to Cu foam and the surface appeared much rougher than the surface of Ni film. The chemical composition of Ir in the deposit was 80 ± 1.2 at.%. The film was composed of nanograins. The top surface of as-deposited film was mainly composed of metallic state. However, the top surface of the film consisted of oxides states, such as Ni oxides or Ni(OH)2, and Ir oxides after electrochemical measurements. As-deposited Ir–Ni thin film with large real active area exhibited high efficient electrocatalytic activity for HER, and achieved a current density of 10 mA cm2 at an overpotential of 60 mV and a Tafel slope of 40 mV dec−1, which is superior to pure Ir and Ni thin films. The remarkable increase in electrocatalytic activity for Ir–Ni film was ascribed to both increased surface area of active centers due to relatively rough and electrocatalytic synergism of Ir and Ni for the HER.

Graphic Abstract

Ir–Ni thin film electrodeposited on a foam copper electrode was used as an electrocatalyst for HER. The surface of as-deposited film was composed of metallic state. As-deposited Ir–Ni thin film with large real active area exhibited high efficient electrocatalytic activity for HER, and achieved a current density of 10 mA cm2 at an overpotential of 60 mV and a Tafel slope of 40 mV dec−1, which is superior to pure iridium and Ni thin films. As-deposited film possessed a good stability by accelerated degradation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armaroli N, Balzani V (2011) ChemSusChem 4:21

    CAS  PubMed  Google Scholar 

  2. Merki D, Stéphane F, Vrubel H et al (2011) J Chem Sci 2:1262

    CAS  Google Scholar 

  3. Strmcnik D, Lopes PP, Genorio B et al (2016) Nano Energy 29:29

    CAS  Google Scholar 

  4. Wu WP, Chen ZF, Wang LB (2015) Prot Met Phys Chem Surf 51:607

    CAS  Google Scholar 

  5. Wu WP, Jiang JJ, Chen ZF (2016) Acta Astronaut 123:1

    CAS  Google Scholar 

  6. Wu WP, Chen ZF (2016) Surf Interface Anal 48:353

    CAS  Google Scholar 

  7. Singh SK, Xu Q (2010) Chem Commun 46:6545

    CAS  Google Scholar 

  8. Kuttiyiel KA, Sasaki K, Chen WF et al (2014) J Mater Chem A 2:591

    CAS  Google Scholar 

  9. Moghaddam RB, Wang C, Sorge JB et al (2015) Electrochem Commun 60:109

    CAS  Google Scholar 

  10. Özer E, Sinev I, Mingers AM et al (2018) Surfaces 1:165

    Google Scholar 

  11. He L, Huang Y, Liu XY et al (2014) Appl Catal B 147:779

    CAS  Google Scholar 

  12. Jović BM, Lačnjevac UČ, Jović VD et al (2015) Int J Hydrog Energy 40:10480

    Google Scholar 

  13. Wu WP, Chen ZF (2017) Johns Matthey Technol Rev 61:16

    Google Scholar 

  14. Wu WP, Chen ZF (2017) Johns Matthey Technol Rev 61:93

    CAS  Google Scholar 

  15. Wu WP, Jiang JJ, Chen ZF (2017) J Wuhan Univ Technol Mater Sci Ed 32:190

    CAS  Google Scholar 

  16. Ohsaka T, Matsubara Y, Hirano K et al (2007) Trans Inst Met Finish 85:265

    CAS  Google Scholar 

  17. Safizadeh F, Ghali E, Houlachi G (2015) Int J Hydrog Energy 40:256

    CAS  Google Scholar 

  18. Eftekhari A (2017) Int J Hydrog Energy 42:11053

    CAS  Google Scholar 

  19. Ahn SH, Tan H, Haensch M et al (2015) Energy Environ Sci 8:3557

    CAS  Google Scholar 

  20. Sawy ENE, Birss VI (2009) J Mater Chem 19:8244

    Google Scholar 

  21. Wessling B, Mokwa W, Schnakenberg U (2008) J Electrochem Soc 155:61

    Google Scholar 

  22. Papaderakis A, Pliatsikas N, Patsalas P et al (2018) J Electroanal Chem 808:21

    CAS  Google Scholar 

  23. Duca M, Guerrini E, Colombo A et al (2013) Electrocatalysis 4:338

    CAS  Google Scholar 

  24. Chen ZF, Zhao HB, Zhang JJ et al (2009) Sci China Mater 60:119

    CAS  Google Scholar 

  25. Sasaki K, Kuttiyiel KA, Barrio L et al (2011) J Phys Chem C 115:9894

    CAS  Google Scholar 

  26. Wu WP, Jiang JJ, Jiang P et al (2018) Appl Surf Sci 434:307

    CAS  Google Scholar 

  27. Wu WP, Wang ZZ, Jiang P et al (2017) J Electrochem Soc 164:D985

    CAS  Google Scholar 

  28. Näther J, Köster F, Freudenberger R et al (2017) IOP Conf Ser Mater Sci Eng 181:012041

    Google Scholar 

  29. Wu WP (2016) Appl Phys A 122:1028

    Google Scholar 

  30. Wu WP, Eliaz N, Gileadi E (2016) Thin Solid Films 616:828

    CAS  Google Scholar 

  31. Wu WP (2016) Electrochemistry 84:699

    CAS  Google Scholar 

  32. Wu WP, Eliaz N, Gileadi E (2014) J Electrochem Soc 162:D20

    Google Scholar 

  33. Wu WP, Liu JW, Miao NM et al (2019) J Mater Sci Mater Electron 30:7717

    CAS  Google Scholar 

  34. Wu WP, Liu JW, Zhang Y et al (2019) J Appl Electrochem 49:1043

    CAS  Google Scholar 

  35. Jin GP, Peng X, Ding YF et al (2009) J Solid State Electrochem 13:967

    CAS  Google Scholar 

  36. Chen R-S, Korotcov A, Huang Y-S et al (2006) Nanotechnology 17:R67

    CAS  Google Scholar 

  37. Wu WP, Liu JW, Zhang Y et al (2019) Surf Eng 35:954

    CAS  Google Scholar 

  38. Yao KL, Zhai MH, Ni YH (2019) Electrochim Acta 301:87

    CAS  Google Scholar 

  39. Yao YW, Jiao LM, Yu NC et al (2016) Russ J Electrochem 52:348

    CAS  Google Scholar 

  40. Shervedani RK, Torabi M, Yaghoobi F (2017) Electrochim Acta 244:230

    Google Scholar 

  41. Bockris JO, Potter EC (1952) J Electrochem Soc 99:169

    CAS  Google Scholar 

  42. Chen WF, Wang CH, Sasaki K et al (2013) Energy Environ Sci 6:943

    CAS  Google Scholar 

  43. Deng J, Ren P, Deng D et al (2015) Angew Chem Int Ed 127:2128

    Google Scholar 

  44. Li DJ, Maiti UN, Lim J et al (2014) Nano Lett 14:1228

    CAS  PubMed  Google Scholar 

  45. Gao MY, Yang C, Zhang QB et al (2016) Electrochim Acta 215:609

    CAS  Google Scholar 

  46. Fang M, Gao W, Dong GF et al (2016) Nano Energy 27:247

    CAS  Google Scholar 

  47. Elisa NF, Chong ZW, Omanovic S (2005) J Mol Catal A 226:179

    Google Scholar 

  48. Ezaki H, Morinaga M, Watanabe S (1993) Electrochim Acta 38:557

    CAS  Google Scholar 

  49. Fan CL, Piron DL, Abderrahman S et al (1994) J Electrochem Soc 141:382

    CAS  Google Scholar 

  50. Highfield JG, Claude E, Oguro K (1999) Electrochim Acta 44:2805

    CAS  Google Scholar 

  51. Hahn F, Beden B, Croissant MJ et al (1986) Electrochim Acta 31:335

    CAS  Google Scholar 

  52. Dong SJ, Xie YW, Cheng GG (1992) Electrochim Acta 37:17

    CAS  Google Scholar 

  53. Mozota J, Conway BE (1983) Electrochim Acta 28:1

    CAS  Google Scholar 

  54. Kötz R, Neff H, Stucki S (1984) J Electrochem Soc 131:72

    Google Scholar 

  55. Eliaz N, Gileadi E (2018) Physical electrochemistry—fundamentals, techniques, and applications, 2nd edn. Wiley-VCH, Weinheim, p 327

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank referee’s constructive suggestions and comments and want to thank Mr. Yajun Xue from the Nanjing Institute of Technology for his helpful contribution in EDS elemental mapping and XPS characterizations of the samples. This research was partially supported by National Natural Science Foundation of China (Grant Nos. 61604021, 51875053), Changzhou Sci and Tech Program (Grant No. CJ20190041) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20150260). Dr. Wangping Wu (WPW) thanks the China Scholarship Council (CSC) an “Agreement for Study Abroad for CSC Sponsored Chinese Citizens” awarded a scholarship under the State Scholarship Fund to pursue study in Germany as a Visiting Scholar. PhD Candidate Mr. Näther Johannes (NJ) also thanks an Academic Exchange Project supported by In Pro Technische Universität Chemnitz (TUC).

Author information

Authors and Affiliations

Authors

Contributions

WPW designed the study and supervised an MSc Student, JWL, who performed most of the experiments, and contribute to the first preparation of this article. TSH, YZ, and LL supervised the preparation and pretreatment process of Cu foam and discussed it. NJ guided the experiment of Ir layer and supported chemical-sodium hexabromoiridate(III), JWL prepared film electrodes, LSV and CV testing and stability of the electrode. LZ conducted the SEM/EDS experiments and assisted in their data analysis. WPW, YZ, and LL discussed the results. JWL wrote the manuscript. WPW has carefully revised the manuscript according to the referee’s comments. All authors approved the submission of the final manuscript.

Corresponding author

Correspondence to Wangping Wu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Liu, J., Johannes, N. et al. Galvanostatic Electrodeposition of Thin-Film Ir–Ni Electrocatalyst on Copper Foam for HER Performance in Alkaline Electrolyte. Catal Lett 150, 1325–1336 (2020). https://doi.org/10.1007/s10562-019-03038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03038-5

Keywords

Navigation